Аттестационная работа химизм процесса деструктивной гидрогенизации. Аттестационная работа химизм процесса деструктивной гидрогенизации Кислоты и их свойства

21.01.2024

Один из наиболее распространенных химических элементов, входящий в подавляющее большинство химических веществ - это кислород. Оксиды, кислоты, основания, спирты, фенолы и другие кислородсодержащие соединения изучаются в курсе неорганической и органической химии. В нашей статье мы изучим свойства, а также приведем примеры их применения в промышленности, сельском хозяйстве и медицине.

Оксиды

Наиболее простыми по строению являются бинарные соединения металлов и неметаллов с кислородом. Классификация оксидов включает следующие группы: кислотные, основные, амфотерные и безразличные. Главный критерий деления всех этих веществ заключается в том, какой элемент соединяется с кислородом. Если это металл, то они относятся к основным. Например: CuO, MgO, Na 2 O - окиси меди, магния, натрия. Их основное химическое свойство - это реакция с кислотами. Так, оксид меди реагирует с хлоридной кислотой:

CuO + 2HCl -> CuCl2 + H2O + 63, 3 кДж.

Присутствие атомов неметаллических элементов в молекулах бинарных соединений свидетельствует об их принадлежности к кислотным водорода H 2 O, углекислый газ CO 2 , пятиокись фосфора P 2 O 5 . Способность таких веществ реагировать со щелочами - главная их химическая характеристика.

В результате реакции могут образовываться видов: кислые или средние. Это будет зависеть от того, сколько моль щелочи вступает в реакцию:

  • CO2 + KOH => KHCO3;
  • CO2+ 2KOH => K2CO3 + H2O.

Еще одну группу кислородсодержащих соединений, в которые входят такие химические элементы, как цинк или алюминий, относят к амфотерным оксидам. В их свойствах прослеживается тенденция к химическому взаимодействию как с кислотами, так и со щелочами. Продуктами взаимодействия кислотных оксидов с водой являются кислоты. Например, в реакции серного ангидрида и воды образуется Кислоты - это один из наиболее важных классов кислородсодержащих соединений.

Кислоты и их свойства

Соединения, состоящие из водородных атомов, связанных со сложными ионами кислотных остатков - это кислоты. Условно их можно разделить на неорганические, например, карбонатную кислоту, сульфатную, нитратную, и органические соединения. К последним принадлежат уксусная кислота, муравьиная, олеиновая кислоты. Обе группы веществ имеют схожие свойства. Так, они вступают в реакцию нейтрализации с основаниями, реагируют с солями и основными оксидами. Практически все кислородсодержащие кислоты в водных растворах диссоциируют на ионы, являясь проводниками второго рода. Определить кислый характер их среды, обусловленной избыточным присутствием водородных ионов, можно с помощью индикаторов. Например, фиолетовый лакмус при добавлении его в раствор кислоты приобретает красную окраску. Типичным представителем органических соединений является уксусная кислота, содержащая карбоксильную группу. В нее входит атом водорода, который и обуславливает кислотные Это бесцветная жидкость со специфическим резким запахом, кристаллизующаяся при температуре ниже 17 °С. CH 3 COOH, как и другие кислородсодержащие кислоты, прекрасно растворяется в воде в любых пропорциях. Ее 3 - 5 % раствор известен в быту под названием уксуса, который используют в кулинарии как приправу. Вещество нашло свое применение также в производстве ацетатного шелка, красителей, пластических масс и некоторых лекарственных средств.

Органические соединения, содержащие кислород

В химии можно выделить большую группу веществ, содержащих, кроме углерода и водорода, еще и кислородные частицы. Это карбоновые кислоты, эфиры, альдегиды, спирты и фенолы. Все их химические свойства определяются присутствием в молекулах особых комплексов - функциональных групп. Например, спирта, содержащего только предельные связи между атомами - ROH, где R - углеводородный радикал. Эти соединения принято рассматривать как производные алканов, у которых один водородный атом замещен гидроксогруппой.

Физические и химические свойства спиртов

Агрегатное состояние спиртов - это жидкости или твердые соединения. Среди спиртов нет газообразных веществ, что можно объяснить образованием ассоциатов - групп, состоящих из нескольких молекул, соединенных слабыми водородными связями. Этим фактом определяется и хорошая растворимость низших спиртов в воде. Однако в водных растворах кислородсодержащие органические вещества - спирты, не диссоциируют на ионы, не изменяют цвет индикаторов, то есть имеют нейтральную реакцию. Атом водорода функциональной группы слабо связан с другими частицами, поэтому в химических взаимодействиях способен покидать пределы молекулы. По месту же свободной валентности происходит его замещение на другие атомы, например, в реакциях с активными металлами или со щелочами - на атомы металла. В присутствии катализаторов, таких, как платиновая сетка или медь, спирты окисляются энергичными окислителями - бихроматом или перманганатом калия, до альдегидов.

Реакция этерификации

Одно из важнейших химических свойств кислородсодержащих органических веществ: спиртов и кислот - это реакция, приводящая к получению сложных эфиров. Она имеет большое практическое значение и используется в промышленности для добывания эстеров, применяемых в качестве растворителей, в пищевой промышленности (в виде фруктовых эссенций). В медицине некоторые из эфиров применяют в качестве спазмолитиков, например, этилнитрит расширяет периферические кровеносные сосуды, а изоамилнитрит является протектором спазмов коронарных артерий. Уравнение реакции этерификации имеет следующий вид:

CH3COOH+C2H5OH<--(H2SO4)-->CH3COOC2H5+H2O

В ней CH 3 COOH - это уксусная кислота, а C 2 H 5 OH - химическая формула спирта этанола.

Альдегиды

Если соединение содержит функциональную группу -COH, то оно относится к альдегидам. Их представляют как продукты дальнейшего окисления спиртов, например, такими окислителями, как оксид меди.

Присутствие карбонильного комплекса в молекулах муравьиного или уксусного альдегида обуславливают их способность полимеризоваться и присоединять атомы других химических элементов. Качественными реакциями, с помощью которых можно доказать наличие карбонильной группы и принадлежность вещества к альдегидам, являются реакция серебряного зеркала и взаимодействие с гидроокисью меди при нагревании:

Наибольшее применение получил ацетальдегид, используемый в промышленности для получения уксусной кислоты - много тоннажного продукта органического синтеза.

Свойства кислородсодержащих органических соединений - карбоновых кислот

Наличие карбоксильной группы - одной или нескольких - это отличительная черта карбоновых кислот. Благодаря строению функциональной группы, в растворах кислот могут образовываться димеры. Они связаны между собой водородными связями. Соединения диссоциируют на катионы водорода и анионы кислотного остатка и являются слабыми электролитами. Исключением служит первый представитель ряда предельных одноосновных кислот - муравьиная, или метановая, являющаяся проводником второго рода средней силы. Присутствие в молекулах только простых сигма- связей говорит о предельности, если же вещества имеют в своем составе двойные пи-связи - это непредельные вещества. К первой группе относятся такие кислоты, как метановая, уксусная, масляная. Вторая представлена соединениями, входящими в состав жидких жиров - масел, например, олеиновой кислотой. Химические свойства кислородсодержащих соединений: органических и неорганических кислот во многом похожи. Так, они могут взаимодействовать с активными металлами, их оксидами, со щелочами, а также со спиртами. Например, уксусная кислота реагирует с натрием, оксидом и с образованием соли - ацетата натрия:

NaOH + CH3COOH→NaCH3COO + H2O

Особое место занимают соединения высших карбоновых кислородсодержащих кислот: стеариновой и пальмитиновой, с трехатомным предельным спиртом - глицерином. Они относятся к сложным эфирам и называются жирами. Эти же кислоты входят в состав солей натрия и калия в качестве кислотного остатка, образуя мыла.

Важные органические соединения, широко распространенные в живой природе и играющие ведущую роль в качестве наиболее энергоемкого вещества - это жиры. Они представляют собой не индивидуальное соединение, а смесь разнородных глицеридов. Это соединения предельного многоатомного спирта - глицерина, который, как и метанол и фенол, содержит гидроксильные функциональные группы. Жиры можно подвергнуть гидролизу - нагреванию с водой в присутствии катализаторов: щелочей, кислот, оксидов цинка, магния. Продуктами реакции будут глицерин и различные карбоновые кислоты, в дальнейшем используемые для производства мыла. Чтобы в этом процессе не использовать дорогостоящие природные необходимые карбоновые кислоты получают, окисляя парафин.

Фенолы

Заканчивая рассматривать классы кислородсодержащих соединений, остановимся на фенолах. Они представлены радикалом фенилом -C 6 H 5 , соединенным с одной или несколькими функциональными гидроксильными группами. Простейший представитель этого класса - карболовая кислота, или фенол. Как очень слабая кислота, он может взаимодействовать со щелочами и активными металлами - натрием, калием. Вещество с ярко выраженными бактерицидными свойствами - фенол применяется в медицине, в также при производстве красителей и фенолформальдегидных смол.

В нашей статье мы изучили основные классы кислородсодержащих соединений, а также рассмотрели их химические свойства.

Преподаватель:

Учебное заведение: профессиональный лицей метрополитена г. Санкт - Петербурга

Учебная дисциплина: химия

Тема: «Кислородсодержащие и азотсодержащие органические соединения»

Целевая аудитория: 1курс

Тип урока: обобщение материала, 1 акад. час.

Цели урока:

Знание: знать формулы и свойства кислородосодержащих и азотосодержащих органических веществ

Понимание: понимать зависимость свойств веществ от строения молекулы, от функциональной группы

Применение: использовать сведения о свойствах веществ для составления уравнений химических реакций.

Анализ: анализировать взаимное влияние групп атомов в молекулах органических веществ.

Синтез: обобщать сведения о свойствах органических веществ в виде цепочки превращений

Оценка: проводить самооценку по предложенным рубрикам.

Оборудование: интерактивная доска, мультимедийная презентация.

План урока:

1. Орг. момент

2. Повторение ранее изученного.

3. Выступления студентов.

4. Самоопределение студентов по уровням самооценки.

5. Самостоятельная работа учащихся.

6. Подведение итогов по критериально - ориентированной системе.

7. Домашнее задание.

Ход урока

1. Организационный момент.

Построение группы, рапорт старосты группы о количестве присутствующих учащихся.

2. Повторение ранее изученного

Сведения о функциональных группах, классах кислородосодержащих и азотосодержащих веществ, о простейших представителях этих классов с применением интерактивной доски и мультимедийной презентации.

Какая группа атомов, обязательно присутствующая в молекулах веществ данного класса, определяет химическую функцию вещества, т. е. его химические свойства?

Ответ: функциональная группа атомов

Дайте название функциональной группе - ОН

Ответ: гидроксильная группа атомов.

Какой класс веществ определяет гидроксильная группа атомов?

Ответ: Спирты, если 1 группа – ОН, одноатомные спирта, если более одной группы - ОН, многоатомные спирты.

Дайте название функциональной группе - СОН. Какой класс веществ она определяет?

Ответ: альдегидная группа, определяет класс альдегидов.

Дайте название функций группе – СОН. Какой класс она определяет?

Ответ: карбоксильная группа, определяет класс карбоновых кислот.

Дайте название функций группе - NH2. Какой класс она определяет?

Ответ: аминогруппа определяет класс аминов или класс аминокислот.

Слушаем сообщения учащихся с представлением мультимедийных презентаций о простейших представителях различных классов кислородосодержащих и азотосодержащих веществ.

3.Выступления студентов.

Сообщение 1 .

Этанол С2Н5ОН, класс одноатомные спирты, функциональная группа – гидроксильная группа атомов – ОН. Качественная реакция – взаимодействие с оксидом меди (II) с образованием альдегида. Химические свойства (выделяем 2 реакции) – горение и взаимодействие с металлами (Na).

Сообщение 2 .

Пропантриол (глицерин) С3Н7(ОН)3. Класс – многоатомные спирты, функциональные группы – несколько гидроксильных групп – ОН. Качественная реакция – взаимодействие с гидроксидом меди (II). Химические свойства – взаимодействие с натрием и с галогеноводородами.

Лабораторный опыт:

В пробирку наливаем около 1мл раствора сумората меди (II) и добавляем немного раствора гидроксида натрия до образования голубого осадка гидроксида меди (II). К полученному осадку добавляем по каплям раствор глицерина. Взболтаем смесь. Отмечаем превращение голубого осадка в раствор синего цвета.

(глицерин + Cu(OH)2 ----- синий раствор)

Сообщение 3.

Фенол C6H5OH – простейший представитель класса фенолов.

Функциональная группа – гидроксильная группа –OH. Качественная реакция – образование фиолетового раствора при взаимодействии с хлоридом железа (III) или образование белого осадка при взаимодействии с бромом. Химические свойства: фенол – слабая кислота, взаимодействует в металлами (Na) со щелочами (NaOH) и с бромом.

Сообщение 4.

Этаноль или уксусный альдегид CH3-COH Функциональная группа – COH альдегидная группа. Класс – альдегиды. Качественная реакция – реакция «серебряного зеркала». Химические свойства: реакция восстановления и реакция окисления.

Лабораторный опыт: демонстрационный опыт.

В пробирку, содержащую 1мл альдегида (водный раствор) прибавляем немного капель аммиачного раствора оксида серебра. Нагреваем пробирку. Наблюдаем выделение серебра на стенках пробирки, поверхность стекла становится зеркальной.

Сообщение 5.

Этановая кислота CH3-COOH (уксусная кислота). Класс – карбоновые кислоты. Функциональная группа – COOH карбоксильная группа. Качественная реакция – индикатор лакмус приобретает красный цвет.

Химические свойства: как любая кислота взаимодействует с металлами (Na), основными оксидами (Na2O), щелочами (NaOH).

Лабораторный опыт:

В сухую чистую пробирку с универсальным индикатором прилить немного уксусной кислоты. Индикатор краснеет.

Сообщение 6.

Глюкоза C6H12O6. Класс – углеводы. Функциональные группы: 5-OH и 1-COH, т. е. альдегидроспирт. Качественные реакции: взаимодействие с гидроксидом меди с образованием синего раствора. Реакция «серебряного зеркала» с выделением серебра на стенках пробирки. Химические свойства: восстановление в шестиатомный спирт, окисление в глюконовую кислоту, реакция брожения .

Сообщение 7.

Анилин C6H5-NH2.

Функциональная группа – NH2 аминогруппа. Класс – амины. Качественная реакция: взаимодействие с бромной водой с образованием белого осадка. Химические свойства: взаимодействие с соляной кислотой и с бромом.

Сообщение 8.

Аминоэтановая кислота NH2-CH2-COOH или аминоуксусная кислота.

Класс – аминокислоты. Функциональные группы: - NH2 аминогруппа и –COOH карбоксильная группа. Химические свойства: АК – амфотерные соединения; - NH2 сообщает основные свойства, - COOH – кислотные свойства. Поэтому аминокислоты способны соединяться друг с другом, образуя белковые молекулы, а белок – основа жизни на нашей планете.

4. Самоопределение студентов по уровням самооценки.

Интерактивная доска: учащиеся знакомятся с картой самооценки развития на уроке и отмечают свой уровень.

1. Я могу определить функциональную группу и простейшего представителя класса органических веществ с помощью преподавателя и конспекта (6-7баллов).

2. Я могу определить функциональную группу, простейшего представителя класса органических веществ без помощи преподавателя и без помощи конспекта (8-10баллов).

3. Я могу определить качественную реакцию и химические свойства вещества с помощью преподавателя и конспекта (11-14баллов).

4. Я могу определить качественную реакцию и химические свойства вещества без помощи преподавателя и без конспекта (15-18баллов).

Класс

Функциональные группы

Простейший представитель

Качественные реакции

Химические свойства

Одноатомные

спирты

Многоатомные спирты

Фенолы

Альдегиды

Карбоновые кислоты

Углеводы

Амины

Аминокислоты

Учащиеся знакомятся с критериально - ориентированной системой оценивания.

Критерии:

18 – 15 баллов – «отлично»

баллов – «хорошо»

10 – 6 баллов – «удовлетворительно»

5 и менее – «неудовлетворительно»

5. Самостоятельная работа учащихся.

6. Подведение итогов по критериально - ориентированной системе (объявление количества баллов учащимся).

7. Домашнее задание: заполнение таблицы.

Азот, как и кислород, часто входит в состав органических веществ, и его соединения необходимы для живых организмов.

Соединения, содержащие азот, отличаются большим разнообразием, чем кислородсодержащие. Это связано с тем, что у азота валентность выше и при этом он имеет три гибридных состояния, подобно атому углерода. Соединения с одинарной связью С-Ы называются амины, с двойной связью С=Ы - имины, с тройной связью С=К - нитрилы.

Существенное отличие азота от кислорода заключается в том, что азот может входить в органические соединения как в восстановленном, так и в окисленном состоянии. Электроотрицательность азота (х = 3,0) выше, чем у углерода (х = 2,5), и ниже, чем у кислорода (х = 3,5). Если азот связан с углеродом и водородом, то его степень окисления -3. В соединениях, содержащих нитрогруппу -Ж) 2 , азот связан с кислородом и углеродом и находится в степени окисления +3. Органические соединения с окисленным азотом содержат внутренний запас окислителя. При наличии нескольких нитрогруп в молекуле соединение становится взрывчатым. К веществам такого типа принадлежит 2,4,6-тринитротолуол (тротил).

Восстановленный азот придает органическим соединениям те же свойства, что и кислород: полярность, основность и кислотность, способность

образовывать водородные связи. Однако полярность азотсодержащих соединений меньше, а водородные связи слабее, чем у кислородсодержащих. Поэтому по некоторым физическим свойствам амины оказываются между углеводородами и спиртами. В то время как все спирты при обычных условиях являются жидкостями, некоторые амины газообразные вещества:

Азот в состоянии вр 3 -гибридизации - хороший донор электронной пары. Поэтому, как мы уже знаем, амины проявляют довольно сильные основные свойства. В меньшей мере донорные свойства выражены у азота в состоянии $р 2 -гибридизации. Кислотные свойства азотсодержащих органических соединений гораздо слабее, чем кислородсодержащих. Но при участии электронов азота в сопряжении с тг-электронам и углерода кислотные свойства проявляются.

Один из классов азотсодержащих веществ - амины. Так называются азотсодержащие органические вещества, в которых атом азота соединен с углеводородными радикалами и соответствующим числом атомов водорода. В зависимости от числа радикалов различают:

  • - первичные амины ЯМН 2 ;
  • - вторичные амины КИ/ЫН;
  • - третичные амины КК"К"Ы.

Следует обратить внимание, что понятия первичных, вторичных и третичных аминов не совпадают с соответствующими понятиями для спиртов.

Различают гомологические ряды предельных, непредельных и ароматических аминов. Здесь также имеется различие в терминологии, если сравнивать спирты и амины. В ароматических спиртах гидроксогруппа должна быть связана с атомом углерода в радикале, а не в ароматическом цикле. В случае азотсодержащих соединений вещество с группой ЫН 2 , связанной с ароматическим циклом, тоже считается амином.

Амины с небольшой молекулярной массой представляют собой жидкие или газообразные вещества, хорошо растворимые в воде. Они имеют неприятный запах, напоминающий запах аммиака. Специфический запах рыбы также связан с присутствием аминов. У высших аминов появляются те же особенности, какие отмечались у спиртов и кислот, - растворимость в воде уменьшается и появляется поверхностная активность.

Получение аминов. Один из способов получения аминов аналогичен получению спиртов. Это реакции галогенпроизводных углеводородов с аммиаком, идущие по механизму нуклеофильного замещения:

Амин здесь не может оказаться непосредственным продуктом реакции, так как образующийся хлороводород реагирует с ним как с основанием.

давая соль амина. Для выделения свободного амина полученную соль обрабатывают щелочью:

Галогенпроизводное углеводорода реагирует не только с аммиаком, но и с первичным амином. При этом образуется вторичный амин, а на следующей стадии - третичный амин:

Амины получаются также гидрогенизацией нитрилов:

Ароматические амины получаются восстановлением нитросоединений. В качестве восстановителей используются металлы в кислой среде:

Этот ароматический амин называется анилин. Реакция восстановления нитросоединений открыта Н. Н. Зининым в 1842 г. В промышленности нитробензол восстанавливают водородом на никелевом катализаторе при ~300°С. Анилин стал очень важным промежуточным продуктом, применяемым для производства красителей, полимеров, лекарств и др. Мировое производство анилина - свыше 1 млн т в год.

Химические свойства аминов. Амины относятся к числу веществ, способных гореть с образованием С0 2 , Н 2 0 и азота Ы 2 .

Как основания амины подобны аммиаку, от которого производятся замещением водорода на углеводородные радикалы. Эти радикалы влияют на силу оснований. Воздействие индуктивного и мезомерного эффектов на основные свойства в целом противоположно их воздействию на кислотные свойства. Предельные спирты по кислотным свойствам слабее воды, а предельные амины по основным сильнее аммиака; фенолы по кислотным свойствам значительно сильнее спиртов, а анилин по основным свойствам значительно слабее предельных аминов.

В предельных аминах +/-эффект радикала повышает электронную плотность на азоте, поэтому увеличивается способность азота отдавать электронную пару для образования донорно-акцепторной связи. В анилине электронная пара азота участвует в сопряжении с ароматическими тт-электронами и становится менее доступной для образования донорноакцепторной связи. Поэтому вещества располагаются в следующий ряд по ослаблению основных свойств:

предельные амины > ЫН 3 > ароматические амины.

Пример 22.15. В каком направлении смещено равновесие реакции между этил- амином и гидрохлоридом анилина?

Решение. Этиламин более сильное основание, чем анилин. Поэтому равновесие смещено в сторону образования анилина:

Амины в качестве оснований реагируют с ионами металлов, образуя комплексные соединения. Ион металла выступает акцептором электронной пары азота, как и в случае реакций с аммиаком. Известно очень много комплексных соединений металлов (/-блока с разнообразными аминами. При смешивании растворов сульфата меди и метиламина образуется интенсивно окрашенный раствор более чистого синего оттенка, чем в случае реакции с аммиаком (параграф 210):

диамины типа гШ 2 СН 2 СН 2 1Н 2 дают более прочные комплексы, чем моноамины, так как каждая молекула имеет два донорных атома азота и присоединяется двумя донорно-акцепторными связями.

Первичные амины под действием азотистой кислоты (или нитрита натрия в кислой среде) дезаминируются, превращаясь в спирты:

В первичных и вторичных аминах водород аминогруппы замещается на углеводородные радикалы при реакциях с галогенпроизводными (см. получение аминов). Амин с галогенангидридом дает амид кислоты, в котором имеется радикал, связанный с азотом:

Третичные амины присоединяют галогенпроизводные углеводородов с образованием четырехзамещенных (четвертичных) солей аммония:

Это кристаллические, хорошо растворимые в воде вещества. В отличие от обычных солей аммония они не гидролизуются и не разлагаются щелочами.

В анилине и других ароматических аминах группа ЫН 2 проявляет положительный мезомерный эффект, ускоряя реакции электрофильного замещения в ароматическом радикале. Анилин обесцвечивает бромную воду, образуя при этом белый осадок триброманилина.

Гетероорганические соединения (серо-, кислород- и азотсодержащие) различного строения и молекулярной массы присутствуют в разнообразных пропорциях в дистиллятных и остаточных фракциях нефти. Особенно сложно изучение природы и состава высокомолекулярных гетероорганических соединений, основной частью которых являются смолоасфальтеновые вещества. Благодаря неподеленным парам электронов гетероатомы серы, кислорода и азота способны выступать в качестве координирую­щего центра при образовании ассоциатов в нефтяных системах.

Серосодержащие соединения относятся к наиболее представительной группе гетероатомных компонентов газоконденсатных и нефтяных систем. Общее содержание серы в нефтегазовых системах колеблется в широких пределах: от сотых долей процента до 6-8 % (масс.) и более. Высокое содержание общей серы характерно для газоконденсатов Астраханского , Карачаганакского (0,9 %) и др. месторождений. Содержание серосодержащих соединений в некоторых нефтях достигает 40 % (масс.) и выше, в некоторых случаях нефть почти целиком состоит из них. В отличие от других гетероатомов, преимущественно концентрирующихся в CAB, значительная доля серы содержится в дистиллятных фракциях. Как правило, содержание серы в прямогонных фракциях возрастает по мере повышения температуры их кипения и общей сернистости исходной нефти.

В нефтегазовых системах присутствуют незначительные количества неорганических серосодержащих соединений (элементная сера и сероводород), они также могут образоваться как вторичные продукты разложения других серосодержащих соеди­нений при высоких температурах в процессах перегонки, деструктивной переработки. Среди серосодержащих соединений, найденных в нефти, идентифицированы следующие (по данным Института химии нефти Тф СО РАН).

1. Алифатические, алициклические и ароматические тиолы (меркаптаны) R-SH:

С 6 Н 5 С n H 2 n +1 SH С n H 2 n +1 С 6 Н 5 SH C 10 H 7 SH

ареноалканотиолы тионафтолы

2. Тиоэфиры (сульфиды) следующих основных типов:

R-S-R" C 6 H 5 -S-C 6 H 5

тиаалканы, тиаалкены, тиаалкины диарилсульфиды

тиациклоалканы алкиларилсульфиды арилтиаалканы

(R, R" - предельные и непредельные алифатические углеводородные заместители).

3. Диалкиддисульфиды R-S-S-R", где R, R" - алкильные, циклоалкильные или арильные заместители.

4. Тиофены и их производные, важнейшими из которых являются следующие аренотиофены:

алкилбензотиофены алкилбензонафтотиофены алкилдибензотиофены

Распределение различных групп серосодержащих соединений в нефтях и в нефтяных фракциях подчиняется следующим закономерностям.

Тиолы содержатся практически во всех сырых нефтях обычно в малых концентрациях и составляют 2-10 % (маcc.) от общего содержания серосодержащих соединений. В газоконденсатах присутствуют в основном алифатические меркаптаны C 1 -С з. Некоторые нефти и газоконденсаты и их фракции представляют собой естественные концентраты меркаптанов, примерами которых могут служить бензиновые фракции супергигантского месторождения Прикаспия; фракция 40-200°С газоконденсата Оренбургского месторождения, содержащая 1,24 % (маcc.) общей серы, в том числе 0,97 % меркаптановой; легкая керосиновая фракция 120-280°С нефти месторождения Тенгиз, содержащая 45-70 % меркаптановой серы от общего содержания серосодержащих соединений. При этом запасы природных тиолов в углеводородном сырье Прикаспийского региона соответствуют уровню их общемирового получения синтетическим путем. Природные тиолы - перспективное сырье для синтеза пестицидов (на основе симметричных триазинов) и одоризации сжиженных газов. Перспективная потребность России в тиолах для одоризации в настоящее время составляет 6 тыс. тонн /год.

Тиоэфиры составляют до 27 % от суммы серосодержащих соединений в сырых нефтях и до 50 % - в средних фракциях, в тяжелых вакуумных газойлях содержание сульфидов меньше. Методы выделения нефтяных сульфидов основаны на их спо­собности образовывать комплексные соединения донорно-акцепторного типа за счет передачи неподеленной пары электронов атома серы на свободную орбиталь акцептора. В качестве акцептора электронов могут выступать галогениды металлов, галогеналкилы, галогены. Реакции комплексообразования с нефтяными сульфидами протекают, к сожалению, не селективно; в образовании комплексов могут принимать участие и другие гетероатомные компоненты нефти.

Диалкилдисульфиды в сырых нефтях не обнаружены, они обычно образуются при окислении меркаптанов в мягких условиях и поэтому присутствуют в бензинах (до 15 %). Основная доля серосодержащих соединений нефтей прихо­дится на так называемую "остаточную" серу, не определяемую стандартными методами. В ее составе преобладают тиофены и их производные, поэтому раньше "остаточную" серу называли "тиофеновой", однако с помощью масс-спектрометрии отрица­тельных ионов в ней обнаружены ранее не определявшиеся сульфоксиды, сульфоны и дисульфан. В бензиновых фракциях содержание производных тиофена мало, в средних и особенно высококипящих фракциях оно достигает 50-80 % от сум­мы серосодержащих соединений. Относительное содержание тиофеновых производных, как правило, совпадает со степенью ароматичности нефтяной системы. Трудности, возникающие при выделении серосодержащих соединений (особенно из высококипящих фракций), вызваны близостью химических свойств аренов и тиофенов. Схожесть их химического поведения обусловлена ароматичностью тиофенов, возникающей как результат включения гетероатома серы в π–электронную систему до ароматического секстета. Следствием этого является повышенная склонность нефтяных тиофенов к интенсивному межмолекулярному взаимодействию.

Кислородсодержащие соединения содержаться в нефтяных системах от 0,1-1,0 до 3,6 % (масс.). С повышением температуры кипения дистиллятных фракций содержание их возрастает, причем основная часть кислорода сосредоточена в смолоасфальтеновых веществах. В составе нефтей и дистиллятов содержится до 20 % и более кислородсодержащих соединений.

Среди них традиционно выделяют вещества кислого и нейтрального характера. К кислым компонентам относятся карбоновые кислоты и фенолы. Нейтральные кислородсодержащие соединения представлены кетонами, ангидридами и амидами кислот, сложными эфирами, фурановыми производными, спиртами и лактонами.

Присутствие в нефтях кислот было обнаружено очень давно из-за высокой химической активности по сравнению с УВ. История обнаружения их в нефти такова. При получении керосина высокого качества для осветительных целей его обрабатывали щелочью (кислотно-щелочная очистка) и при этом наблюдали образование веществ, обладающих высокой эмульгирующей способностью. Впоследствии выяснилось, что эмульгаторами являются натриевые соли кислот, содержащихся в дистиллятных фракциях. Экстракция водными и спиртовыми растворами щелочей является и сегодня классическим приемом извлечения кислых компонентов из нефтей. В настоящее время методы выделения кислот и фенолов также основаны на взаимодействии их функциональных групп (карбоксильной и гидроксильной) с каким-либо реагентом.

Карбоновые кислоты являются наиболее изученным классом кислородсодержащих соединений нефти. Содержание нефтяных кислот по фракциям меняется по экстремальной зависимости, максимум которой приходится, как правило, на легкие и средние масляные фракции. Методом хромато-масс-спектрометрии идентифицированы различные типы нефтяных кислот. Большинство из них относится к одноосновным (RCOOH), где в качестве R может быть практически любой фрагмент углеводородных и гетероорганических соединений нефти. Давно замечено, что групповые составы кислот и нефтей соответствуют друг другу: в метановых нефтях преобладают алифатические кислоты, в нафтеновых - нафтеновые и нафтеноароматические кислоты. Обнаружены алифатические кислоты от C 1 до С 25 линейного строения и некоторые разветвленного строения. При этом у нефтяных кислот соотношение н-алкановых и разветвленных кислот совпадает с соотношением соответствующих углеводородов в нефтях.

Алифатические кислоты представлены, в первую очередь, н-алкановыми кислотами. Из разветвленных кислот более распространены содержащие метильный заместитель в основной цепи. Все низшие изомеры этого типа найдены в нефтях, вплоть до С 7 . Еще одна важная группа алифатических кислот - кислоты изопреноидного строения, среди которых доминируют пристановая (С 19) и фитановая (С 20).

Алициклические (нафтеновые) кислоты нефти - это моноциклокарбоновые кислоты - производные циклопентана и циклогексана; полициклические могут содержать до 5 колец (данные для калифорнийской нефти). Группы СООН в мо­лекулах моноциклических кислот непосредственно соединены с циклом или находятся на конце алифатических заместителей. В цикле может быть до трех (чаще всего метальных заместителей), наиболее распространенными положениями которых являются 1, 2; 1, 3; 1, 2, 4; 1, 1, 3 и 1, 1, 2, 3.

Молекулы три-, тетра- и пентациклических кислот, выделенных из нефтей, построены в основном из сконденсированных между собой циклогексановых колец.

Установлено присутствие в нефтях гексациклических нафтеновых кислот с циклогексановыми кольцами. Ароматические кислоты в нефтях представлены бензойной кислотой и ее производными. В нефтях обнаружено и множество гомологических рядов полициклических нафтеноароматических кислот, а идентифицированы моноароматические стероидные кислоты в самотлорской нефти

Из кислородсодержащих соединений нефтяные кислоты характеризуются наибольшей поверхностной активностью . Установлено, что поверхностная активность как малосмолистых, так и высокосмолистых нефтей значительно снижается после удаления из них кислых компонентов (кислот и фенолов). Сильные кислоты принимают участие в образовании ассоциатов нефтей, что показано при изучении их реологических свойств.

Гораздо хуже кислот изучены фенолы. Их содержание в нефтях западно-сибирских месторождений колеблется от 40 до 900 мг/л. В западно-сибирских нефтях концентрации фенолов возрастают в ряду С 6 <С 7 << С 8 <С 9 . В нефтях обнаружены фенол, все крезолы, ксиленолы и отдельные изомеры С 9 . Установлено, что соотношение между фенолами и алкилфенолами колеблется в пределах от 1: (0,3-0,4) до 1: (350-560) и зависит от глубины залегания и возраста нефти. В некоторых нефтях идентифицирован β-нафтол. Высказано предположение о наличии соединений типа о-фенилфенолов, находящихся в нефтях в связанном состоянии из-за склонности к образованию внутримолекулярных водородных связей. При исследовании антиокислительной способности компонентов гетероор-ганических соединений нефти установлено, что концентраты фенольных соединений являются наиболее активными природ­ными ингибиторами.

В нейтральных кислородсодержащих соединениях калифорнийских нефтей обнаружены все простейшие алкилкетоны С з -С 6 , ацетофенон и его нафтено- и арено-производные, флуоренон и его ближайшие гомологи. Выход из самотлорской нефти концентрата кетонов, состоящий в основном из диалкилкетонов, составляет 0,36 %, при этом степень извлечения кетонов составляет только 20 %, что свидетельствует о наличии кетонов больших молекулярных масс, не извлекаемых по данной методике. При исследовании кетонов нефтях Западной Сибири установлено, что в них присутствуют кетоны С 19 -Сз 2, причем в метановых нефтях преобладают алифатические кетоны, а в нафтеновых нефтях - с циклановыми и ароматическими заместителями.

Можно предполагать наличие в нефтях спиртов в свободном состоянии, в связанном они входят в состав сложных эфиров. Из гетероорганических соединений нефти наиболее изучена склонность кислородсодержащих соединений к интенсивным межмолекулярным взаимодействиям.

Исследование азотсодержащих соединений возможно двумя путями - непосредственно в сырой нефти и после их выделения и разделения. Первый путь позволяет изучить азотсодержащие соединения в состоянии, близком к природному, однако при этом не исключено возникновение заметных ошибок из-за малой концентрации этих соединений. Второй путь позволяет подобные ошибки уменьшить, но в процессе химического воздействия на нефть при разделении и выделении возможно изменение их структуры. Установлено, что азотсодержащие соедине­ния в нефти представлены преимущественно циклическими соединениями. Алифатические азотсодержащие соединения встречаются лишь в продуктах деструктивной переработки нефти, в которых они образуются в результате разрушения азотистых гетероциклов.

Все азотсодержащие соединения нефти являются, как правило, функциональными производными аренов, в связи с чем имеют сходное с ними молекулярно-массовое распределение. Однако в отличие от аренов азотсодержащие соединения концентрируются в высококипящих фракциях нефти и являются составной частью CAB. До 95 % имеющихся в нефти атомов азота сосредоточены в смолах и асфальтенах. Высказано мне­ние, что при выделении смол и асфальтенов с ними соосаждаются в виде донорно-акцепторных комплексов даже сравнительно низкомолекулярные азотсодержащие соединения.

В соответствии с общепринятой классификацией по кис­лотно-основному признаку азотсодержащие соединения делятся на азотистые основания и нейтральные соединения.

Азотсодержащие основания являются, по-видимому, единственными носителями основных свойств среди компонентов нефтяных систем. Доля азотсодержащих оснований в нефти, титруемых хлорной кислотой в уксуснокислой среде, колеблется от 10 до 50 %. В настоящее время в нефтях и нефтепродуктах идентифицировано более 100 алкил- и ареноконденсированных аналогов пиридина, хинолина и других оснований.

Сильноосновные азотсодержащие соединения представлены пиридинами и их производными:

К слабоосновным азотсодержащим соединениям относятся анилины, амиды, имиды и N-циклоалкилпроизводные, имеющие в пиррольном кольце в качестве заместителя алкильные, циклоалкильные и фенильные группы:

В составе сырых нефтей и прямогонных дистиллятов чаще всего обнаруживаются производные пиридина. С увеличением температуры кипения фракций обычно возрастает содержание азотсодержащих соединений, при этом изменяется их структура: если в легких и средних фракциях преобладают пиридины, то в более тяжелых - их полиароматические производные, а в продуктах термической переработки при повышенных температурах в большей степени присутствуют анилины. В светлых фракциях доминируют азотистые основания, а в тяжелых фракциях, как правило, - нейтральные азотсодержащие соединения.

К нейтральным азотсодержащим соединениям, не содержащим в молекулах иных гетероатомов, кроме атома азота, и выделенным из нефти, относятся индолы, карбазолы и их нафтеновые и серосодержащие производные:

При выделении нейтральные азотсодержащие соединения образуют ассоциаты с кислородсодержащими соединениями и извлекаются попутно с азотсодержащими основаниями.

Наряду с названными монофункциональными в нефтях идентифицированы следующие азотсодержащие соединения:

1. Полиароматические с двумя атомами азота в молекуле:

2. Соединения с двумя гетероатомами (азота и серы) в одном цикле – тиазолы и бензтиазолы и их алкил- и нафтеновые гомологи:

3. Соединения с двумя гетероатомами азота и серы в разных циклах: тиофенсодержащие алкил-, циклоалкилиндолы и карбазолы.

4. Соединения с карбонильной группой в азотсодержащем гетероцикле, такие как пиперидоны и хинолоны:

5. Порфирины. Строение порфиринов, представляющих собой комплексные соединения с ванадилом VO, никелем и железом, будет рассмотрено ниже.

Значение азотсодержащих соединений нефти как природных ПАВ очень велико, они во многом наряду с CAB определяют поверхностную активность на жидких границах раздела фаз и смачивающую способность нефти на границах раздела порода - нефть, металл - нефть. Азотсодержащие соединения и их производные - пиридины, гидроксипиридины, хинолины, гидроксихинолины, имидазолины, оксазолины и т. д. - являются природными нефтерастворимыми ПАВ, обладающими ингибирующими свойствами при коррозии металлов в процессе добычи, транспортировки и переработки нефти. Более слабыми поверхностно-активными свойствами характеризуются такие азотсодержащие соединения нефти, как гомологи пиррола, индола, карбазола, тиазолы и амиды.

Смолоасфальтеновые вещества (CAB ). Одной из наиболее представительных групп гетероорганических высокомолекулярных соединений нефти являются CAB. Характерные особенности CAB - значительные молекулярные массы, наличие в их составе различных гетероэлементов, поляр­ность, парамагнетизм, высокая склонность к ММВ и ассоциации, полидисперсность и проявление выраженных коллоидно-дисперсных свойств - способствовали тому, что для их исследо­вания оказались неподходящими методы, обычно применяемые при анализе низкокипящих компонентов. Учитывая специфику изучаемого объекта, Сергиенко С.Р. более 30 лет тому назад выделил химию высокомолекулярных соединений нефти в самостоятельный раздел химии нефти и внес крупный вклад в ее становление своими основополагающими работами.

До 60-70-х годов исследователи определяли физико-химические характеристики CAB (некоторые из них приведены в табл. 2.4) и пытались представить структурную формулу средней молекулы асфальтенов и смол на основании данных инструментального структурного анализа.

Подобные попытки предпринимают и в настоящее время. Изменяющиеся в значительных пределах величины элементного состава, средних молекулярных масс, плотности, растворимости и т. п. для образцов CAB различных отечественных и зарубежных нефтей отражают разнообразие природных нефтей. В смолах и асфальтенах сосредоточены большая часть присутствующих в нефти гетероэлементов и практически все металлы.

Азот в CAB преимущественно входит в гетероароматические фрагменты пиридинового (основного), пиррольного (нейтрального) и порфиринового (металлокомплексного) типа. Сера входит в состав гетероциклов (тиофеновых, тиациклановых, тиазольных), тиольных групп и сшивающих молекулы сульфидных мостиков. Кислород в смолах и асфальтенах представлен в форме гидроксильных (фенольных, спиртовых), карбоксильных, эфирных (простых, сложных лактонных), карбо­нильных (кетонных, хинонных) групп и фурановых циклов. Между молекулярной массой асфальтенов и содержанием гетероэлементов есть определенное соответствие (рис. 2.2).

Охарактеризуем современный уровень представлений о CAB. Йен отмечает универсальный характер асфальтенов как составной части природных углеродных источников, не только каустобиолитов (нефтей и твердых топлив), но также осадочных пород и метеоритов.

Согласно классификации природных ископаемых с углеводородной основой, предложенной Абрахамом, к нефтям относят те, что содержат до 35-40 % (масс.) CAB, а природные асфальты и битумы содержат до 60-75 % (масс.) CAB, по другим данным - до 42-81 %. В отличие от более легких компонентов нефти, признаком отнесения которых к своим группам было сходство их химического строения, критерием объединения соединений в класс под названием CAB служит их близость по растворимости в конкретном растворителе. При действии на нефть и нефтяные остатки больших количеств петролейного эфира, низкокипящих алканов происходит осаждение веществ, называемых асфальтенами , которые растворимы в низших аренах, и сольватирование других компонентов - мальтенов, состоящих из углеводородной части и смол.

Рис. 2.2. Зависимость молеку­ лярной массы асфальтенов (М) от среднего суммарного содер­ жания гетероэлементов (O+N+S) в нефти месторожде­ ний Сафанья (1), Серро Негро (2), Боскан (4), Батираман (5) и арабской легкой нефти (3)

В основе современных схем разделения тяжелой части нефти лежат классические приемы, впервые предложенные Маркуссоном. Нерастворимые в сероуглероде и других растворителях вещества относят к карбоидам. Вещества, раствори­мые только в сероуглероде и осаждающиеся четыреххлористым углеродом, называют карбенами . Карбоиды и карбены , как правило, обнаруживаются в составе тяжелых продуктов деструктивной переработки нефти в количестве нескольких процентов и будут рассмотрены отдельно ниже. В составе сырых нефтей и в остатках первичной переработки нефти их практически нет.

От растворителя зависят и свойства выделенных асфальтенов. Следствием различий природы и свойств растворителей является то, что молекулярная масса асфальтенов из арабских нефтей при растворении в бензоле в среднем выше в 2 раза, чем в тетрагидрофуране. (табл. 2. 5).

Таблица 2.5

Растворитель Параметр раство- Диэлектрическая Дипольный момент, Д римости проницаемость

Тетрагидрофуран 9,1 7,58 1,75 Бензол 9,2 2,27 0

В процессе развития представлений о строении и природе нефтяных CAB можно выделить два основных этапа, связанных общей идеей о коллоидно-дисперсном строении, но различающихся методическим подходом к оценке строения единичного элемента коллоидной структуры. На первом этапе - этапе химических представлений о строении молекул CAB - применяли стандартный химический подход для идентификации строения неизвестного соединения. После установления молекулярной массы, элементного состава и брутто-формулы молекул смол и асфальтенов C n H 2 n - z N p S g O r . Затем вычисляли значение z. Для смол оно составляло 40-50, для асфальтенов - 130-140. Типичный пример результатов таких исследований для образцов CAB различных отечественных и зарубежных нефтей представлен в табл. 2.4. (см. табл. 1.4). Как видно, асфальтены отличаются от смол из того же источника повышенным содержанием углерода и металлов и пониженной долей водорода, более значительными размерами полиароматических ядер, а также меньшей средней длиной крупных алифатических заместителей и меньшим числом ациклических фрагментов, непосредственно сконденсированных с ароматическими ядрами.

Второй этап можно характеризовать как этап развития физических представлений о строении асфальтенов и анализа причин, обусловливающих склонность асфальтенов к ассоциации. Действительно, объяснение зависимости молекулярной массы от условий определения (см. табл. 2.5), а также ее прямолинейной зависимости от размеров частиц асфальтенов (рис. 1.5) стало возможно в рамках качественно новых представлений о строе­нии асфальтенов.

В 1961г. Т. Йен предложил так называемую пачечную модель строения асфальтенов типа "plate to plate". В основу модели была положена не необходимость ее соответствия вычисленным структурным параметрам о составе асфальтенов, а принципиаль ная возможность плоскопараллельной ориентации полиароматических фрагментов разных молекул. Их объединение в результате межмолекулярных (π - π, донорно-акцепторных и др.) взаимодействий происходит с образованием слоистых стэкинг-структур (термин "стэкинг" принят в молекулярной биологии для обозначения стопкообразного расположения молекул одна над другой).

Рис. 2.5. Корреляция между размером частиц асфальтенов (D) и их молекулярной массой (М)

В соответствии с моделью Йена на основе данных рентгеновской дифракции асфальтены имеют кристаллическую структуру и представляют собой стэкинг-структуры диа­метром 0,9-1,7 нм из 4-5 слоев, отстоящих друг от друга на 0,36 нм. Размер стэкинг-структур по нормали к плоскости ароматических пластин составляет 1,6-2,0 нм (рис. 2.6). Прямолинейными отрезками показаны плоские полиароматические, а ломаными - насыщенные фрагменты молекул. Полиароматические фрагменты представлены сравнительно некрупными, чаще всего не более чем тетрациклическими, ядрами. Из алифатических фрагментов наиболее распространенными являются короткие алкильные группы С 1 -С 5 , в первую очередь метильные, но присутствуют и линейные разветвленные алканы, содержащие 10 углеродных атомов и более. Есть в молекулах CAB и полициклические насыщенные структуры с 1-5 конденсированными циклами, преимущественно бицикланы.

В рамках модели Йена отмеченная выше зависимость молекулярной массы асфальтенов от условий выделения и природы растворителя легко объясняется ассоциацией, предполагающей несколько уровней структурной организации асфальтенов: молекулярно-диспергированное состояние (I), в котором асфальтены находятся в виде отдельных слоев; коллоидное состояние (II), являющееся результатом образования стэкинг-структур с характерными размерами; дисперсное кинетически устойчивое состояние (III), возникающее при агрегировании стэкинг-структур, и дисперсное кинетически неустойчивое состояние (IV), сопровождающееся выделением осадка.

Рис. 2.6. Модель строения асфальтенов по Йену

Модели пачечной структуры строения асфальтенов придерживаются многие современные исследователи. Унгер Ф.Г. высказал оригинальную точку зрения на процесс возникновения и существования CAB в нефти. Нефти и нефтяные системы, содержащие CAB, по его мнению, - термодинамически лабильные парамагнитные ассоциированные растворы. Ядра ассоциатов таких растворов образованы асфальтенами, в которых локализованы стабильные свободные радикалы, а окружающие ядра сольватные слои состоят из диамагнитных молекул смол. Часть диамагнитных молекул смол способна переходить в возбужденное триплетное состояние и подвергаться гемолизу. Поэтому смолы являются потенциальным источником асфальтенов, что объясняет отмеченную еще Гурвичем Л.Г. легкость превращения смол в асфальтены.

Итак, новизна изложенных представлений связана с утверждением особой роли обменных взаимодействий для объяснения природы CAB. В отличие от пачечной модели развивается идея о центрально-симметричном устройстве частицы CAB. Впервые она была постулирована Д. Пфайфером и Р. Саалем, предложившими статическую модель строения структурной единицы асфальтенов. Согласно ей ядро структурной единицы образовано высокомолекулярными полициклическими углеводоро­дами и окружено компонентами с постепенно снижающейся степенью ароматичности. Нейман Г. подчеркивал, что энергетически выгодно обращение полярных групп внутрь структурной единицы, а углеводородных радикалов - наружу, что находится в согласии с правилом уравнивания полярности по Ребиндеру.

Порфирины являются типичными примерами нативных нефтяных комплексных соединений. Порфирины с ванадием в качестве координационного центра (в форме ванадила) или никелем (см. 11). Ванадилпорфирины нефти - в основном гомологи двух рядов: алкилзамещенных порфиринов с различным суммарным числом атомов углерода в боковых заместителях порфинового цикла и порфиринов с дополнительным циклопентеновым кольцом. Металлпорфириновые комплексы присутствуют в природных битумах до 1 мг/100 г, а в высоковязких нефтях - до 20 мг/100 г нефти. При исследовании характера распределения металлпорфириновых комплексов между составными частями НДС в работе методами экстракции и гель-хроматографии установлено, что 40 % ванадилпорфиринов сосредоточено в дисперсных частицах (примерно поровну в составе ядра и сольватного слоя), а оставшаяся их часть и никель-порфирины содержатся в дисперсионной среде.

Ванадилпорфирины в составе асфальтенов вносят значительный вклад в поверхностную активность нефтей, при этом собственная поверхностная активность асфальтенов невелика. Так, исследование нефтей Башкирии показало, что поверх­ностное натяжение нефтей на границе с водой сильно коррелирует с содержанием в них ванадилпорфиринов, в то время как коэффициент корреляции с содержанием в них асфальтенов относительно невысок (рис. 2.7).

В меньшей степени изучено влияние металлпорфиринов на дисперсное строение нефти и условия протекания фазовых переходов в нефтяных системах. Есть данные об их отрицательном влиянии наряду с другими гетероатомными компонентами на каталитические процессы нефтепереработки. Помимо этого, они должны сильно влиять на кинетику и механизм фазовых переходов в НДС.

Рис. 2.7. Изотермы межфазного натяжения а на границе с водой:

а - бензольные растворы асфальтенов: 1- асфальтены с порфиринами; 2-5 - асфальтены по мере удаления порфиринов после одной, пяти, семи, тринадцати экстракций соответственно; б - нефтей Башкирии

Известно, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория Л. М. Бутлерова. Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цени (циклы) в молекулах.
Помимо атомов углерода и водорода молекулы органических веществ могут содержать атомы и других химических элементов. Вещества, в молекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероциклическим соединениям.
Гетероатомы (кислород, азот и др.) могут входить в состав молекул и ациклических соединений, образуя в них функциональные группы, например, гидроксильную - ОН, карбонильную, карбоксильную, аминогруппу -NН2.
Функциональная группа - группа атомов, которая определяет наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.

Углеводороды - это соединения, состоящие только из атомов водорода и углерода.

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атомами углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические.

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой р-электронов, образующих общую π-систему (единое π-электронное облако). Ароматичность характерна и для многих гетероциклических соединений.

Все остальные карбоциклические соединения относятся к алициклическому ряду.

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в отличие от предельных (насыщенных), содержащих только одинарные связи.

Предельные алифатические углеводороды называют алканами , они имеют общую формулу С n Н 2 n +2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины.

Содержащие одну двойную связь , получили название алкены . Они имеют общую формулу С n Н 2 n .

Непредельные алифатические углеводороды с двумя двойными связями называют алкадиенами

Непредельные алифатические углеводороды с одной тройной связью называют алкинами . Их общая формула С n Н 2 n — 2 .

Предельные алициклические углеводороды - циклоалканы , их общая формула С n Н 2 n .

Особая группа углеводородов, ароматических , или аренов (с замкнутой общей π-электронной системой), известна из примера углеводородов с общей формулой С n Н 2 n -6.

Таким образом, если в их молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов : галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные.

Общая формула моногалогенопроизводных предельных углеводородов:

а состав выражается формулой

C n H 2 n +1 Г,

где R - остаток от предельного углеводорода (алкана), углеводородный радикал (это обозначение используется и далее при рассмотрении других классов органических веществ), Г - атом галогена (F, Сl, Вг, I).

Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Спирты называют одноатомными , если они имеют одну гидроксильную группу, и предельными, если они являются производными алканов.

Общая формула предельных одноатомных спиртов:

а их состав выражается общей формулой:
С n Н 2 n +1 ОН или С n Н 2 n +2 О

Известны примеры многоатомных спиртов, т. е. имеющих несколько гндроксильных групп.

Фенолы - производные ароматических углеводородов (ряда бензола), в которых один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.

Простейший представитель с формулой С 6 Н 5 ОН называется фенолом.

Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).

В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.

В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.

Состав предельных альдегидов и кетонов выражается формулой С n Н 2л О.

Карбоновые кислоты - производные углеводородов, содержащие карбоксильные группы (-СООН).

Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных одноосновных кислот (R-СООН). Их состав выражается формулой С n Н 2 n O 2 .

Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R-О-R или R 1 -O-R 2 .

Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2 n +2 O

Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.

Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .

Общая формула предельных мононитросоединений:

а состав выражается общей формулой

С n Н 2 n +1 NO 2 .

Амины - соединения, которые рассматривают как производные аммиака (NН 3), в котором атомы водорода замещены на углеводородные радикалы.

В зависимости от природы радикала амины могут быть алифатическими и ароматическими .

В зависимости от числа замещенных на радикалы атомов водорода различают:

Первичные амины с общей формулой: R-NН 2

Вторичные - с общей формулой: R 1 -NН-R 2

Третичные - с общей формулой:

В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми.

Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу -NН 2 . Состав предельных первичных аминов выражается формулой С n Н 2 n +3 N.

Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом: аминогруппу -NН 2 , и карбоксил -СООН.

Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой С n Н 2 n +1 NO 2 .

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др.

Для названия органических соединений используют 2 номенклатуры — рациональную и систематическую (ИЮПАК) и тривиальные названия.

Составление названий по номенклатуре ИЮПАК

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);
-ен (при наличии двойной связи);
-ин (при наличии тройной связи).

Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:
СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3
бутен-1 бутен-2

СН 2 =СН–СН=СН 2
бутадиен-1,3

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.

Номенклатура некоторых органических веществ (тривиальная и международная)