Факторы от которых зависит растворимость веществ. Факторы, влияющие на растворимость. Упражнения и задачи для самостоятельного решения

24.11.2023

Растворимость веществ зависит от природы растворителя и вещества, которое растворяется, а также от условий растворения: температуры, давления (для газов), концентрации, наличия других растворенных веществ.

Одни вещества растворяются в определенном растворителе хорошо, другие - плохо. Но можно и количественно оценить способность того или иного вещества к растворению или, другими словами, растворимость вещества.

Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.

По растворимости в воде все вещества делятся на три группы:

― хорошо растворимые (р),

― малорастворимые (м),

― практически нерастворимые (н).

Однако следует отметить, что абсолютно нерастворимых веществ нет. Если опустить в воду стеклянную палочку или кусочек золота или серебра, то они в ничтожно малых количествах все же будут растворяться в воде.

Примером малорастворимых в воде веществ могут служить гипс, сульфат свинца (твердые вещества), диэтиловый эфир, бензол (жидкие вещества), метан, азот, кислород (газообразные вещества).

Многие вещества в воде растворяются весьма хорошо. Примером таких веществ могут служить сахар, медный купорос, гидроксид натрия (твердые вещества), спирт, ацетон (жидкие вещества), хлороводород, аммиак (газообразные вещества). Следует отметить, что растворимость твердых веществ зависит от степени их измельчения. Мелкие кристаллики, размеры которых меньше примерно 0,1 мм, более растворимы, чем крупные.

Растворимость, выраженная при помощи массы вещества, которое может раствориться в 100 г воды при данной температуре, называют также коэффициентом растворимости.

Предельная растворимость многих веществ в воде (или в других растворителях) представляет собой постоянную величину, соответствующую концентрации насыщенного раствора при данной температуре. Она является качественной характеристикой растворимости и приводится в граммах на 100 г растворителя при определённых условиях. Растворимость некоторых веществ в воде при комнатной температуре приведена в табл.1.

Растворимость жидкостей в жидкостях может быть полной или ограниченной. Более распространена ограниченная растворимость. При полной взаимной растворимости жидкости смешиваются в любых соотношениях. Например (спирт-вода). Жидкости с ограниченной взаимной растворимостью всегда образуют два слоя. Примером системы с ограниченной растворимостью является система бензол-вода. При смешивании этих жидкостей всегда существует два слоя: верхний слой состоит в основном из воды и содержит бензол в небольших количествах (примерно 11 %), нижний слой, наоборот, состоит в основном из бензола и содержит около 5 % воды. С увеличением температуры взаимная растворимость ограниченно растворимых жидкостей в большинстве случаев возрастает и часто при достижении определенной для каждой пары жидкостей температуры, называемой критической , жидкости полностью смешиваются одна с другой. Например, фенол и вода при t° 68,8° (критическая температура) и выше растворяются друг в друге в любых пропорциях; ниже критической температуры они лишь ограниченно растворимы друг в друге.



Вещества, для которых характерны ионный и полярный типы связи, лучше растворяются в полярных растворителях (вода, спирты, жидкий аммиак, уксусная кислота и др.). Напротив, вещества с неполярной или малополярным типом связи хорошо растворяются в неполярных растворителях (ацетон, сероуглерод, бензол и др.). Можно сформулировать общее правило взаимной растворимости веществ: «Подобное растворяется в подобном».

Зависимость растворимости твердых и газообразных веществ от температуры показывают кривые растворимости (рис. 1).

Рис. 1. Кривые растворимости твердых и газообразных веществ.

Ход кривых растворимости нитратов серебра, калия и свинца показывает, что с повышением температуры растворимость этих веществ существенно возрастает. Почти горизонтальный ход кривой растворимости хлорида натрия свидетельствует о незначительном изменении его растворимости с повышением температуры.

Для большинства солей характерно увеличение растворимости при нагревании.

По кривым растворимости можно определить:

― коэффициент растворимости веществ при различных температурах;

― массу растворимого вещества, которая выпадает в осадок при охлаждении раствора от t 1 o C до t 2 o C.

Если растворение вещества является экзотермическим процессом, то с повышением температуры его растворимость уменьшается. Практически все газы растворяются с выделением тепла, поэтому с повышением температуры растворимость газов уменьшается (рис.3). Так, кипячением воды можно удалить из нее газы, которые были растворены.

В табл. 2 указаны растворимости в воде некоторых газов при различных температурах.

Растворимость газа зависит от природы жидкости и газа. Например, кислород растворяется в воде в количестве примерно вдвое большем, чем азот. Это обстоятельство имеет большое значение для жизни живых организмов в воде.

Растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением - увеличивается.

Растворимость газов в воде уменьшается также при добавлении к раствору солей, ионы которых более прочно связываются с молекулами воды, чем молекулы газа, понижая тем самым его растворимость.

Ключевые слова : растворимость осадка; факторы, влияющие на растворимость.

На растворимость осадка оказывает влияние ряд факторов, важнейшими из которых являются: присутствие в растворе сильных электролитов, рН среды, температура, применяемый растворитель, присутствие в растворе комплексообразующих агентов, конкурирующие окислительно-восстановительные реакции.

В аналитической практике образование и растворение осадка всегда происходит в присутствии посторонних электролитов. Нахождение в растворе электролита, содержащего разноименные с осадком ионы , увеличивает ионную силу раствора, и, как следствие, вызывает увеличение растворимости малорастворимого вещества за счет снижения активности ионов в растворе (солевой эффект). При этом существенное влияние оказывают как концентрация ионов, находящихся в растворе, так и их заряд.

В присутствии сильного электролита, имеющего общий ион с осадком , растворимость осадка уменьшается вследствие увеличения концентрации одного из ионов малорастворимого соединения в растворе. В результате происходит дополнительное выпадение осадка до момента установления нового равновесия между осадком и раствором. Солевой эффект в данном случае также имеет место, однако вклад эффекта подавления растворимости является доминирующим. В некоторых случаях при введении в раствор избыточного количества ионов, одноименных с осадком, растворимость осадка может увеличиваться вследствие образования растворимых комплексов.

Значение рН раствора существенным образом может влиять на полноту осаждения. Особенно заметно это влияние при осаждении малорастворимых гидроксидов, а также солей слабых кислот. Рассмотрим это влияние на примере осаждения малорастворимых гидроксидов. Здесь осадителем является ОН – -ион и его концентрация определяет, выпадет ли осадок гидроксида и будет ли осаждение практически полным. При осаждении гидроксида очень важно знать рН начала осаждения (рН н.о.) и конца осаждения (рН к.о.). Например, проведем расчет рН н.о. и рН к.о. Mg(OH) 2 из 0,01 М раствора соли магния.

[ОН – ] н.о. = (ПРMg(OH) 2 /) ½ = (6·10 -10 /1·10 -2) ½ = 2,5·10 -4 моль/л.

Следовательно, pOH = -lg 2,5·10 -4 = 3,6; рН н.о. = 14 - pOH = 14 - 3,6 = 10,4.

Для расчета рН конца осаждения исходят из того факта, что осаждение считается полным тогда, когда концентрация осаждаемого иона (в данном случае Mg 2+) понизится до 10 -5 -10 -6 моль/л. Следовательно, концентрация ОН – -ионов в конце осаждения равна

[ОН – ] к.о. = (ПРMg(OH) 2 /) ½ = (6·10 -10 /1·10 -6) ½ = 2,5·10 -2 моль/л.

рН к.о. = 14 - lg 2,5·10 -2 = 12,4 .

Если рН > 12,4, то осаждение ионов Mg 2+ будет еще более полным, а при рН < 12,4 осаждение будет неполным, при рН < 10,4 ионы Mg 2+ осаждаться не будут. Теоретически вычисленные значения рН н.о. и рН к.о. в большинстве случаев совпадают с опытными достаточно удовлетворительно.

Для регулирования рН в процессе осаждения часто используют различные буферные смеси, способные поддерживать постоянным значение рН в заданном интервале.

ПР является постоянной величиной при данной температуре. С увеличением температуры ПР возрастает, следовательно, возрастает растворимость осадка.

Растворимость труднорастворимых электролитов зависит от природы электролита и растворителя. При растворении проявляется правило «подобное растворяется в подобном», например соединения с полярной связью растворяются в полярных растворителях, а соединения с неполярной связью – в неполярных. Зависимость растворимости от природы растворителя можно использовать для понижения растворимости осаждаемых соединений.

При введении в систему «раствор – осадок» соединений, образующих устойчивые комплексы с катионами малорастворимого электролита, растворимость осадка увеличивается. Кроме того, ион из осадка может перейти в раствор вследствие протекания окислительно-восстановительной реакции .

Таким образом, для удовлетворения основного требования, предъявляемого к осадку в гравиметрии, – его малой растворимости – необходимо вести осаждение в присутствии одноименных ионов, при строго определенном значении pH среды, в отсутствие мешающих комплексообразующих реагентов, окислителей или восстановителей, необходимо также контролировать температуру, при которой проводится осаждение .

Контрольные вопросы

1. Перечислите факторы, влияющие на растворимость осадка.

2. Охарактеризуйте влияние сильных электролитов на растворимость.

3. Как влияет рН на полноту осаждения? Для каких осадков это влияние

наиболее существенно?

4. Как влияют на растворимость температура и природа растворителя?

5. Может ли оказать влияние на растворимость осадка присутствие

комплексообразующих реагентов, окислителей или восстановителей?

1. Васильев В.П. Аналитическая химия. Кн. 1. Титриметрические и гравиметрический методы анализа. - М.: Дрофа, 2005. - С. 281 - 295.

2. Харитонов Ю.Я. Аналитическая химия (аналитика): учебник для вузов. В 2 кн. Кн. 2. Количественный анализ. Физико-химические (инструментальные) методы анализа. – М.: Высшая школа, 2001. – С. 52 - 57.


С.Б. Денисова, О.И. Михайленко

Растворение как физико-химический процесс. Изменение энтропии, энтальпии и энергии Гиббса при растворении веществ. Сольватация, сольваты. Тепловой эффект растворения. Строение молекул воды и свойства воды как растворителя. Гидраты и кристаллогидраты.

Химическое равновесие. Обратимые и необратимые химические реакции. Константа химического равновесия. Факторы, определяющие величину константы. Катализ и химическое равновесие. Сдвиг химического равновесия, принцип Ле Шателье.

Химическое равновесие – это состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции. Оно является динамическим равновесием.

Обратимые химические реакции – реакции, которые одновременно протекают в прямом и в обратном направлениях.

Необратимые химические реакции – реакции, которые протекают толкьо в одном направлении, т.е. продукты этих реакций не взаимодействуют друг с другом с образованием исходных веществ.

Константа химического равновесия – отношение констант сокростей прямой и обратной реакций, постоянная величина. Величина константы равновесия зависит от природы реагирующих веществ и температуры. Катализатор не влияет на величину константы равновесия, т. к. он одинаково снижает энергию активации прямой и обратной реакций и поэтому одинаково изменяет скорости прямой и обратной реакций. Концентрации, входящие в выражение константы равновесия, называются равновесными концентрациями.

В выражение константы равновесия гетерогенной реакции входят только концентрации веществ, находящихся в жидкой или газообразной фазе.

Факторы, определяющие величину константы: Величина константы равновесия зависит от природы реагирующих веществ и температуры. Катализатор не влияет на величину константы равновесия, т. к. он одинаково снижает энергию активации прямой и обратной реакций и поэтому одинаково изменяет скорости прямой и обратной реакций.

Катализ и химическое равновесие: катализатор одновременно увеличивает сокрость прямой и обратной реакции, а поэтому толкьо уменьшает время достижения равновесия.

Сдвиг химического равновесия, принцип Ле Шателье.

Если при изменении условий протекания реакции (температуры, давления, концентрации какого-либо из участвующих в реакции веществ) скорости прямого и обратного процесса изменяются неодинаково, то химическое равновесие нарушается. Процесс перехода от одного равновесного состояния к новому равновесию называется смещением химического равновесия.

Направление этого смещения подчиняется принципу Ле Шателье: Если на систему, находящуюся в состоянии химического равновесия, оказать какое-либо воздействие, то равновесие сместится в таком направлении, что оказанное воздействие будет ослаблено. Т. е. повышение температуры приведет к смещению равновесия в направлении реакции, сопровождающейся поглощением теплоты; повышение давления - в направлении уменьшения суммарного числа молей газообразных веществ; повышение концентрации одного из исходных веществ - в направлении прямой реакции.


Растворы. Классификация дисперсных систем: истинные растворы, коллоидные
растворы, грубодисперсные системы.

Растворы – гомогенные системы переменного состава, которые содержат два или несколько компонентов.

Растворы:

ü Жидкие – натрий хлорид в воде, йод в спирте.

ü Газообразные – воздух.

ü Твердые – сплавы металлов.

Наиболее распространены жидкие растворы. Они состоят из растворителя (жидкости) и растворенных веществ (газообразных, жидких, твердых). Жидкие растворы могут быть водные и неводные. Водные растворы – растворы, в которых растворителем является вода. Неводные растворы – растворы, в которых растворителем являются другие жидкости.

Все растворы относятся к дисперсным системам. Раствор может оставаться гомогенной системой, если частицы растворенного вещества не существуют в виде достаточно крупных ассоциатов, отделенных от растворителя поверхностью раздела, т.е. не образует отдельной фазы. Считается, что раствор остается истинным , если размер частиц растворенного вещества не превышает 1 нм. При увеличении размеров частиц в пределах от 1 до 100 нм раствор приобретает специфические свойства, и если поверхность такой частицы, включающей большое число молекул вещества, не имеет электрического заряда, то раствор разрушается и вещество выпадает в осадок. При наличии на поверхности частицы плотного электрического заряда за счет адсорбции ею из раствора ионов одного знака или сильно полярных молекул разрушения не происходит. Такие частицы называются мицеллами, а сами растворы – коллоидными .

Гетерогенные системы, состоящие из сплошной непрерывной фазы – дисперсионной среды и находящихся в этой среде раздробленных частиц того или иного размера и формы – дисперсной фазы называются дисперсной системой.

Обязательным условием получения дисперсных систем является взаимная нерастворимость диспергируемого вещества вещества и дисперсионной среды

Различают:

ü Грубодисперсные системы (размер частиц дисперсной фазы > 10 -6 м)

ü Предельно-высоко-дисперсные или коллоидные (размер частиц дисперсной фазы составляет 10 -9 – 10 -7 м)

Растворы (истинные) - это гомогенные системы переменного состава, где, в отличие от соединений переменного состава, содержание хотя бы одного компонента можно довести до 100%, не нарушая гомогенности. Этот компонент называется растворителем. Смесь спирта с водой можно разбавить любым количеством воды, все равно получится гомогенный раствор, и так – до практически чистой воды. Аналогично можно добавлять к раствору спирт, пока концентрация воды не дойдет практически до нуля. Здесь любое из двух веществ можно считать растворителем. Поваренной соли в воде нельзя растворить более 28%. Если добавлять больше соли, она не растворяется, получается гетерогенная система. Растворитель здесь не соль, а вода. Не потому, что ее больше, а потому что она составляет с раствором единую фазу. Растворителя может быть и меньше, чем растворенного вещества. Например, растворимость нитрата серебра в воде при 20°С – 70%, а при 100° - 90%. Воды в насыщенном растворе всего 30-10%, но растворитель – именно вода, а не нитрат серебра, потому что он твердый, а раствор жидкий. Это две разные фазы.

Растворимость


Если вещества растворимы ограниченно, значит, есть какая-то предельная концентрация, свыше которой в данных условиях вещество не растворяется. Раствор, находящийся в равновесии с избытком растворяемого вещества, называется насыщенным. Растворимость - это концентрация насыщенного раствора. Для данных условий это константа. Растворимость часто выражают количеством граммов растворяемого вещества в 100 г растворителя в данных условиях (температура, давление). Раствор, концентрация которого меньше растворимости - ненасыщенный. Он не находится в равновесии с растворяемым веществом: если добавлять это вещество, оно будет растворяться, пока раствор не станет насыщенным или пока оно не закончится. Раствор, концентрация которого больше растворимости - пересыщенный (не переНАсыщенный!). Он тоже не находится в равновесии с растворяемым веществом: если добавить хоть немного этого вещества, оно послужит затравкой, на которой начнется быстрое выделение избытка этого вещества из раствора, пока его концентрация не понизится до равновесной (до растворимости). Такой процесс могут вызвать и частицы других веществ (пыль) и встряхивание. Это необратимый процесс - переход системы из неравновесного состояния в равновесное.

Сольваты – продукты переменного состава, которые образуются при химическом взаимодействии частиц растворенного вещества с молекулами растворителя. Если растворителем является вода, то образующиеся сольваты называются гидратами. Процесс образования сольватов называется сольватацией . Процесс образования гидратов – гидратация . Кристаллические вещества, содержащие молекулу воды, называются кристаллогидратами . Вода, входящая в их состав, называется кристаллизационной водой .

Кристаллогидраты:

ü Медный купорос CuSO 4 *5H 2 O

ü Глауберова соль Na 2 SO 4 *10H 2 O

ü Кристаллическая сода Na 2 CO 3 *10H 2 O

Доказательством физико-химического характера процесса растворения являются тепловые эффекты при растворении, т.е. выделение или поглощение теплоты.

Тепловой эффект растворения равен сумме тепловых эффектов физического и химического процессов. Физический процесс протекает с поглощением теплоты, химический – с выделением.

Если в результате гидратации (сольватации) выделяется больше теплоты, чем поглощается при разрушении структуры вещества, то растворение – экзотермический процесс. Если для разрушения структуры вещества необходимо больше теплоты, чем ее образуется при гидратации, то растворение – эндотермический процесс.

С позиции химической термодинамики самопроизвольное протекание процесса растворения возможно, если изменение энергии Гиббса меньше нуля: ΔG = ΔH - TΔS <0

Главное – рост энтропии при перемешивании частиц. Обычно ΔSраств > 0 (хотя иногда при растворении в концентрированных растворах ΔSраств < 0 из-за упорядочения молекул растворителя). Кроме того, как мы видели, бывает и тепловой эффект растворения, нaпример: ΔНраств > 0 при растворении KSCN в воде (эндотермический процесс) или ΔНраств < 0 при растворении H 2 SO 4 в воде (экзотермический процесс). Это зависит от межмолекулярного взаимодействия.

Внутри молекул – прочные ковалентные связи. Но и между молекулами есть притяжение, только более слабое. Если бы его не было, то все молекулярные вещества при всех температурах были бы газами. Различают следующие виды межмолекулярных сил.

Водородная связь . Если атом Н связан с сильно электроотрицательным атомом (F, O или N), он приобретает значительный положительный заряд и может притягиваться к другому электроотрицательному атому той же или, чаще, другой молекулы. Например, в структуре льда каждая молекула воды образует 4 водородных связи: две за счет двух атомов Н, которые притягиваются к неподеленным электронным парам соседних молекул, и две за счет неподеленных пар, которые притягиваются к атомам Н соседних молекул. Ковалентные связи изображают короткими сплошными линиями, а водородные – более длинными пунктирными. При таянии льда разрывается только часть этих связей, а полностью они исчезают в парообразном состоянии.

Силы Ван-дер-Ваальса. Различают три типа этих сил:

ü ориентационное (диполь-дипольное) взаимодействие: полярные молекулы, то есть диполи (например, HCl) ориентируются друг к другу противоположно заряженными концами и притягиваются (но не так сильно и не так жестко ориентированы, как при водородной связи);

ü индукционное взаимодействие – притяжение дипольной молекулы к наведенному ею диполю в молекуле, которая сама по себе неполярна (демонстрация: притяжение бумажек к наэлектризованной расческе); такое может быть только в растворах, но не в чистых веществах, где все молекулы одинаковые;

ü дисперсионное взаимодействие - притяжение мгновенных диполей, которые образуются в любом атоме, ионе, молекуле из-за того, что при движении электронов в каждый момент центр тяжести электронных облаков не точно совпадает с ядром; при сближении атомов вращение мгновенных диполей становится согласованным.

Дисперсионные силы - общие для всех веществ (молекулярных и немолекулярных, с полярной и неполярной связью), но в чистом виде они наблюдаются между неполярными молекулами.

Ковалентные связи намного прочнее межмолекулярных. Ковалентные связи обычно не разрываются при растворении или плавлении молекулярных веществ, а немолекулярные вещества с такими связями очень трудно растворить, расплавить, испарить.

Ион-дипольное взаимодействие. Притяжение полярных молекул к ионам гораздо сильнее, чем к другим полярным молекулам, особенно если ион многозарядный. При этом, кроме чисто электростатического притяжения, могут также образовываться ковалентные донорно-акцепторные связи, но их механизм мы пока не рассматриваем.

В общем виде (М - ион, L - молекула растворителя) : M±p + nL = MLn±p ; ΔH < 0.

Молекула воды - одна из самых полярных, поэтому c ней ΔH такого процесса особенно велика по абсолютной величине - от 300 до 3000 кДж/моль. Это больше энергии одной ковалентной связи, так как каждый ион присоединяет к себе много молекул воды (n не меньше 4, а обычно - больше).

Взаимодействие частиц растворенного вещества с растворителем называется сольватация, а если растворитель - вода, то гидратация. Продукт взаимодействия - сольват (гидрат). Если сольватация особенно сильная, то сольваты сохраняются не только в растворе, но и в кристаллическом состоянии, например, FeSO 4 *7H 2 O, MgCl 2 *6C 2 H 5 OH. Тогда, растворив безводную соль в жидкости, мы обратно (при упаривании) получаем не ее, а сольват.

Таким образом, тепловой эффект растворения состоит из двух слагаемых: затраты энергии на преодоление притяжения между частицами (молекулами или ионами) в исходных веществах и выделения энергии при взаимодействии частиц разных веществ. Поскольку слагаемые имеют разные знаки, то сумма - ΔH растворения - может быть и положительной, и отрицательной. В случае твердых веществ первое слагаемое называют энергией кристаллической решетки, хотя это не очень удачный термин (не все твердые вещества - кристаллические, и слово "решетка" не несет химического содержания).

Пример. Растворение твердого хлорида натрия в воде можно мысленно разбить на следующие стадии.

1) разрушение кристалла на свободные (газообразные) ионы: NaCl(тв.) = Na+(г) + Cl-(г); ΔH 1 >0;

2) гидратация этих ионов: Na + (г) + рН 2 О = Na(Н 2 О)р + (р-р)

Cl - (г) + qН 2 О = Cl(Н 2 О)q - (р-р) ΔH 2 <0

Итоговое уравнение: NaCl(тв.) + (р+q)Н 2 О = Na(Н 2 О)р+ (р-р) + Cl(Н 2 О)q- (р-р) ΔHраств (NaCl) = ΔH 1 + ΔH 2

Отсюда видно, что тепловой эффект растворения близок к нулю, это малая разность двух больших величин, и его трудно точно вычислить. Экспериментально измерено: ΔHраств (NaCl) » 2-4 кДж/моль (в зависимости от концентрации).

Реально, конечно же, перечисленные стадии происходят не последовательно, а параллельно. Энтальпия сублимации (переход в газообразное состояние) слишком велика, чтобы этот процесс шел самопроизвольно. Полярные молекулы воды ориентируются на поверхности ионного кристалла и отрывают от нее ионы. Аналогично они отрывают полярные молекулы, например, из кристалла сахара.

Если мы смешиваем две жидкости с водородными связями, например, воду и серную кислоту, воду и спирт, то кристаллических решеток здесь нет, но и здесь преодолевается притяжение между одинаковыми молекулами (ΔH 1 > 0) и возникает притяжение между разными (ΔH 2 < 0). Что получится в сумме - трудно предугадать заранее, но из опыта мы знаем, что при смешивании ΔH < 0.


Если вещества растворимы ограниченно, значит, есть какая-то предельная концентрация, свыше которой в данных условиях вещество не растворяется. Раствор, находящийся в равновесии с избытком растворяемого вещества, называется насыщенным. Растворимость - это концентрация насыщенного раствора. Для данных условий это константа. Растворимость часто выражают количеством граммов растворяемого вещества в 100 г растворителя в данных условиях (температура, давление). Раствор, концентрация которого меньше растворимости - ненасыщенный. Он не находится в равновесии с растворяемым веществом: если добавлять это вещество, оно будет растворяться, пока раствор не станет насыщенным или пока оно не закончится. Раствор, концентрация которого больше растворимости - пересыщенный (не переНАсыщенный!). Он тоже не находится в равновесии с растворяемым веществом: если добавить хоть немного этого вещества, оно послужит затравкой, на которой начнется быстрое выделение избытка этого вещества из раствора, пока его концентрация не понизится до равновесной (до растворимости). Такой процесс могут вызвать и частицы других веществ (пыль) и встряхивание. Это необратимый процесс - переход системы из неравновесного состояния в равновесное.

Факторы, влияющие на растворимость веществ в жидком состоянии:

1) ПРИРОДА СМЕШИВАЕМЫХ ВЕЩЕСТВ. Мы уже видели, что в веществах с полярными молекулами (особенно с водородными связями) и в ионных веществах существует сильное взаимное притяжение частиц. Поэтому такие вещества не будут легко дробиться (смешиваться с другими), если в растворе не будет сильного притяжения между частицами разных веществ, т.е. большая величина ΔH 1 должна быть полностью или почти полностью скомпенсирована отрицательной величиной ΔH 2 . Отсюда следует, что вещества с ионной связью или с полярными молекулами должны гораздо лучше растворяться в полярных или ионных растворителях, чем в растворителях с неполярными молекулами. Соответственно, вещества с неполярными молекулами лучше растворяются в неполярных растворителях и хуже - в полярных, а металлы - в металлах. Это правило сформулировано еще алхимиками: подобное растворяется в подобном. Не следует путать полярные связи и полярные молекулы. Связь C-Cl полярна, но в молекуле CCl 4 эти связи расположены так симметрично, что их полярность взаимно уничтожается, и молекула неполярна. Молекула воды полярна только потому, что она угловая. Если бы она была линейной, как СО 2 , она была бы неполярна, Ткип. была бы градусов на 200 ниже, и вся жизнь на Земле выглядела бы иначе (а скорее всего, вообще бы не возникла).

Таким образом, если на одежде жирное пятно, его лучше смывать не водой, а бензином, CCl 4 или другим неполярным растворителем, а если пятно от соли или сахара - то лучше водой, а не бензином. Точно так же в металлургии: металлы в жидком состоянии обычно хорошо растворяют друг друга и плохо растворяют вещества с ионной связью (собственные оксиды, фосфаты, силикаты, фториды), которые образуют отдельную жидкую фазу - шлак.

2) ТЕМПЕРАТУРА . Здесь, как и в любых других равновесиях, действует принцип Ле Шателье. При нагревании растворимость возрастает, если ΔHраств > 0 (и тем круче, чем больше ΔH), и убывает, если ΔHраств < 0. Для твердых веществ более характерно первое, а для газов - второе, хотя бывает и наоборот. Это особенно наглядно в случае солей, образующих кристаллогидраты. При растворении кристаллогидрата в воде не может быть сильной гидратации, поскольку вещество уже гидратировано. Поэтому преобладает первое слагаемое, и ΔHраств > 0. Если мы берем ту же соль в безводном виде, но знаем, что она способна давать кристаллогидрат, то можно ожидать, что у нее преобладает второе слагаемое, и ΔHраств < 0. Поэтому графики зависимости растворимости от температуры у кристаллогидрата и безводной соли часто имеют противоположный наклон.

Таким образом, чаще при растворении твердых или жидких веществ в жидкостях растворимость возрастает с повышением температуры, а для газов – убывает.

3) ДАВЛЕНИЕ . Как уже обсуждалось, давление влияет в основном на процессы с участием газов. Запишем выражение константы равновесия при растворении газа L в жидкости:

L(газ) = L(раств); К = /pL, где – концентрация газа в растворе (обычно массовая доля), pL – парциальное давление растворенного газа над раствором.

Отсюда видно, что концентрация насыщенного раствора пропорциональна парциальному давлению газа: = K . pL. Это закон Генри.

Масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа.

Он справедлив только для разбавленных растворов, при не очень высоких давлениях, и при условии, что при растворении нет ни диссоциации, ни ассоциации (иначе изменится уравнение реакции). Например, для HСl в воде он неприменим, а для O 2 , N 2 , NO - применим. По уравнению состояния газа его объем обратно пропорционален давлению. Поэтому объем газа, способного раствориться в данном количестве растворителя, по закону Генри не зависит от давления. Можно сказать: в 1 л воды при 20°С растворяется 31 мл кислорода, не указывая давление. Если повысить давление, то количество молекул кислорода в растворе возрастет, но объем растворенного газа будет тот же.

Зависимость растворимости газов от давления видел всякий, кто открывал бутылку лимонада, пива или шампанского. Внутри бутылки повышенное давление, и углекислый газ находится в растворе. При открывании давление падает, газ смешивается с воздухом, и парциальное давление CO 2 падает еще сильнее. Раствор становится пересыщенным, и из него выделяются пузырьки газа.

4) ПРИСУТСТВИЕ ТРЕТЬЕГО ВЕЩЕСТВА. Его влияние может быть разнообразно. Важнейшие случаи:

а) это вещество сильно сольватируется, связывает много молекул растворителя и этим уменьшает растворимость; пример: спирт по отношению к растворам солей;

б) это вещество связывает молекулы или ионы растворяемого вещества и этим повышает растворимость; пример: аммиак, связывающий ионы меди и повышающий растворимость Cu(OH) 2 ;

в) это вещество дает ионы, одноименные с ионами растворяемого вещества, и тем смещает равновесие растворения влево; пример: в насыщенном растворе CaSO 4 существует равновесие CaSO 4 (тв) = Ca 2+ (р-р) + SO 4 2- (р-р). Добавляя крепкий раствор хлорида кальция, мы увеличиваем концентрацию ионов кальция, и часть сульфата выпадает.

При добавлении HСl(г) к насыщенному раствору NaСl действуют причины (а) и (в).

Одни вещества лучше растворяются в том или ином растворителе, другие хуже. Считается, что абсолютно нерастворимых веществ нет. Каждое вещество способно к растворению, пусть даже в некоторых случаях и в очень незначительных количествах (например, ртуть в воде, бензол в воде).

К сожалению, до настоящего времени, нет теории, с помощью которой можно было бы предсказать и вычислить растворимость любого вещества в соответствующем растворителе. Обусловлено это сложностью и многообразием взаимодействия компонентов раствора между собой и отсутствием общей теории растворов (особенно концентрированных). В связи с этим необходимые данные по растворимости веществ получают, как правило, опытным путем.

Количественно способность вещества к растворению характеризуется чаще всего растворимостью иликоэффициентом растворимости (S ).

Растворимость (S ) показывает сколько граммов вещества может максимально раствориться при данных условиях (температуре, давлении) в 100 г растворителя с образованием насыщенного раствора.

При необходимости коэффициент растворимости определяется и для другого количества растворителя (например, для 1000 г, 100 см 3 , 1000 см 3 и т.д.).

По растворимости все вещества в зависимости от своей природы делятся на 3 группы: 1) хорошо растворимые; 2) мало растворимые; 3) плохо растворимые или нерастворимые.

Коэффициент растворимости для веществ первой группы больше 1 г (на 100 г растворителя), для веществ второй группы лежит в интервале 0,01 – 1,0 г и для веществ третьей группы S< 0,01 г.

На растворимость веществ оказывают влияние многие факторы, главными из которых являются природа растворителя и растворяемого вещества, температура, давление, наличие в растворе других веществ (особенно электролитов).

Влияние природы веществ на растворимость

Установлено опытным путем, что в растворителе, молекулы которого полярны, лучше всего растворяются вещества, образованные ионными или ковалентными полярными связями. А в растворителе, молекулы которого неполярны, лучше растворяются вещества, образованные слабополярными или неполярными ковалентными связями. По другому эту выявленную закономерность можно сформулировать так: «Подобное растворяется в подобном».

Растворимость веществ во многом обуславливается силой и характером их взаимодействия с молекулами растворителя. Чем сильнее выражено это взаимодействие, тем больше растворимость и наоборот.

Известно, что силы, действующие между неполярными и слабополярными молекулами, невелики и неспецифичны, т.е. в количественном выражении существенно не зависят от вида вещества.

Если в неполярную жидкость В ввести однотипные неполярные молекулы А, то энергия взаимодействия частиц А и В между собой не будет значительно отличаться от энергии взаимодействия между частицами А и А или частицами В и В. Поэтому подобно тому как смешиваются любые количества одного и того же вещества, с большой вероятностью будут неограниченно смешиваться друг с другом (т.е. растворяться друг в друге) и различные неполярные жидкости.

По этой же причине и молекулярные кристаллы обычно лучше растворяются в неполярных жидкостях.

Если же энергия взаимодействия молекул А и А или В и В больше чем А и В, то одинаковые молекулы каждого компонента будут предпочтительнее связываться между собой и растворимость их друг в друге понизится (табл. 6).

Полярность любого растворителя часто характеризуют значением его диэлектрической проницаемости (ε), которая легко определяется опытным путем. Чем она больше, тем более полярным является вещество.

Таблица 6. Растворимость KI(мас%) в растворителях различной полярности

Растворимость зависит от природы растворенного вещества и растворителя, температуры и давления.

1)Природа растворенного вещества.

Рис.8. Природа растворенного вещества.

Кристаллические вещества подразделяются на:

P - хорошо растворимые (более 1,0 г на 100 г воды);

M - малорастворимые (0,1 г - 1,0 г на 100 г воды);

Н - нерастворимые (менее 0,1 г на 100 г воды).


Таблица 1.

Таблица растворимости кислот, оснований и солей в воде

(в граммах на 100г воды при 20С)

H + NH 4 + K + Na + Ag + Ba 2+ Ca 2+ Sr 2+ Mg 2+ Zn 2+ Cu 2+ Hg 2+ Pb 2+ Fe 2+ Sn 2+ Mn 2+ Bi 3+ Fe 3+ Al 3+
OH - Р Р Р - P М М Н Н Н - Н Н Н Н Н Н Н
Cl - Р Р Р Р Н Р Р Р Р Р Р Р Н Р Р Р - Р Р
Br - Р Р Р Р Н Р Р Р Р Р Р Р Н Р Р Р - Р Р
I - Р Р Р Р Н Р Р Р Р Р Р Р Н Р Р Р - Р Р
NO 3 - Р Р Р Р Р Р Р Р Р Р Р Р Р Р - Р Р Р Р
S 2- Р Р Р Р Н Р М Р Р Н Н Н Н Н Н Н Н - -
SO 3 2- Р Р Р Р М Н Н Н Н Н Н Н Н Н - Н Н - -
SO 4 2- Р Р Р Р М Н М Н Р Р Р Р Н Р Р Р - Р Р
CO 3 2- Р Р Р Р Н Н Н Н Н Н Н Н Н Н - Н Н - -
PO 4 3- Р Р Р Р Н Н Н Н М Н Н Н Н Н Н Н Н М Н
SiO 3 2- Н - Р Р - Н Н Н Н Н Н - Н Н - Н - Н Н
СH 3 COO - Р Р Р Р Р Р Р Р Р Р Р Р Р Р - Р - Р М

2) Природа растворителя. При образовании раствора связи между частицами каждого из компонентов заменяются связями между частицами разных компонентов. Чтобы новые связи могли образоваться, компоненты раствора должны иметь однотипные связи, т.е. быть одной природы. Поэтому ионные вещества растворяются в полярных растворителях и плохо в неполярных, а


молекулярные вещества - наоборот.

Вода - уникальный, наиболее распространенный и доступный растворитель.

Рис. 9. Зависимость растворимости

веществ от природы растворимости.

Водные растворы неорганических (соли, кислоты, основания) и органических (аминокислоты, азотистые основания, нуклеиновые кислоты) веществ, низко- и высокомолекулярных соединений, электролитов и неэлектролитов, составляют основу важнейших биологических жидкостей, в которых протекают все физико - химические процессы, обеспечивающие жизнедеятельность организма. Например, в медицине используют искусственные аналоги биологических жидкостей – коллоидные и солевые кровезаменяющие растворы.

Растворы веществ с молярной массой меньше 5000 г/моль называются растворами низкомолекулярных соединений (НМС), а растворы веществ с молярной массой больше 5000 г/моль – растворами высокомолекулярных соединений (ВМС).

Растворы низкомолекулярных соединений (электролитов и неэлектролитов) называются истинными в отличие от коллоидных растворов. Истинные растворы характеризуются гомогенностью состава и отсутствием поверхности раздела между растворенным веществом и растворителем. Размер растворенных частиц (ионов и молекул) меньше 10 -9 м.

Большинство ВМС – полимеры, молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок или мономерных звеньев, соединенных между собой химическими связями. Растворы ВМС называются растворами полиэлектролитов. К полиэлектролитам относятся поликислоты (гепарин, полиадениловая кислота, полиаспарагиновая кислота и др.), полиоснования (полилизин), полиамфолиты (белки, нуклеиновые кислоты).

Свойства растворов ВМС существенно отличаются от свойств растворов НМС.

3)Влияние температуры. Если растворение вещества является экзотермическим процессом, то с повышением температуры его растворимость уменьшается (например, Ca(OH)2 в воде) и наоборот. Для большинства солей характерно увеличение растворимости при нагревании. Практически все газы растворяются с выделением тепла. Растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением увеличивается.

Рис. 10. График зависимости

растворимости газов от температуры.

4) Влияние давления . С повышением давления растворимость газов в жидкостях увеличивается, а с понижением уменьшается.

Рис.11. График зависимости

растворимости газа от давления