Упорядоченность системы характеризуется ее. Реферат: Упорядоченность. Хаос. Возрастание энтропии. Как проявляется в жизни

16.03.2024

Федеральная таможенная служба

Государственное образовательное учреждение

Высшего профессионального образования

«Российская таможенная академия»

Владивостокский филиал

Реферат на тему «Упорядоченность. Хаос. Возрастание энтропии»

Выполнили студенты

121 группы: Ильин Д.,

Черноземов А.

Проверил:

Пугач П. А.

Владивосток 2010

1. Введение…………………………………………………………….. 3

2. Упорядоченность…………………………………………………… 4

3. Хаос...................................................................................................... 5

4. Возрастание энтропии……………………………………………… 7

5. Заключение………………………………………………………….. 9

6. Список литературы…………………………………………………10

Введение

Всякие естественные процессы сопровождаются возрастанием энтропии Вселенной; такое утверждение часто называют принципом энтропии. Также энтропия характеризует условия, при которых запасается энергия: если энергия запасается при высокой температуре, ее энтропия относительно низка, а качество, напротив, высоко. С другой стороны, если то же количество энергии запасается при низкой температуре, то энтропия, связанная с этой энергией, велика, а ее качество - низко.

Возрастание энтропии является характерным признаком естественных процессов и соответствует запасанию энергии при все более низких температурах. Аналогично можно сказать, что естественное направление процессов изменения характеризуется понижением качества энергии.

Такое истолкование связи энергии и энтропии, при котором энтропия характеризует условия запасания и хранения энергии, имеет большое практическое значение. Первое начало термодинамики утверждает, что энергия изолированной системы (а возможно, и всей Вселенной) остается постоянной. Поэтому, сжигая ископаемое топливо - уголь, нефть, уран - мы не уменьшаем общих запасов энергии. В этом смысле энергетический кризис вообще невозможен, так как энергия в мире всегда будет оставаться неизменной. Однако, сжигая горсть угля и каплю нефти, мы увеличиваем энтропию мира, поскольку все названные процессы протекают самопроизвольно. Любое действие приводит к понижению качества энергии Вселенной. Поскольку в промышленно развитом обществе процесс использования ресурсов стремительно ускоряется, то энтропия Вселенной неуклонно возрастает. Нужно стремиться направить развитие цивилизации по пути снижения уровня производства энтропии и сохранения качества энергии.

Упорядоченность

Упорядоченность - характеристика структуры, обозначающая степень взаимной согласованности ее элементов. Применительно к социально-когнитивной системе характеристике упорядоченности соответствует высокая степень структурированности знания в контексте конкретно-исторической системы рациональности.

Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура отражает уровень организации материи.

Структура - это внутренняя организация системы, которая способствует связи составляющих систему элементов, определяющая существование ее как целого и ее качественные особенности. Структура определяет упорядоченность элементов объекта. Элементами являются любые явления, процессы, а также любые свойства и отношения, находящиеся в какой-либо взаимной связи и соотношении друг с другом.

Структура есть упорядоченность (композиций) элементов, сохраняющаяся (инвариантная) относительно определенных изменений (преобразований).

Упорядоченность - это относительно устойчивый способ связи элементов, придающий их взаимодействию в рамках внутренне расчлененного объекта целостный характер.

Важнейшее свойство - ее относительная устойчивость, понимаемая как сохранение в изменении. Однако упорядоченность содержит определенную динамичность, отдельные временные моменты, представляет собой процесс развертывания во времени и в пространстве новых свойств элементов.

Упорядоченность - это общий, качественно определенный и относительно устойчивый порядок внутренних отношений между подсистемами той или иной системы. Понятие "уровень организации" в отличие от понятия "структура" включает, кроме того, представление о смене структур и ее последовательности в ходе исторического развития системы с момента ее возникновения. В то время как изменение структуры может быть случайным и не всегда имеет направленный характер, изменение уровня организации происходит необходимым образом. Системы, достигшие соответствующего уровня организации и имеющие определенную структуру, приобретают способность использовать информацию для того, чтобы посредством управления сохранить неизменным (или повышать) свой уровень организации и способствовать постоянству (или уменьшению) своей энтропии.

Хаос

Этимология понятия «хаос».

Хаос, понятие, окончательно оформившееся в древнегреческой философии это трагический образ космического первоединства, начало и конец всего, вечная смерть всего живого и одновременно принцип и источник всякого развития, он неупорядочен, всемогущ и безлик.

Хаос (греч. cháos, от cháino - разверзаюсь, изрыгаю), в древнегреческой мифологии беспредельная изначальная масса, из которой образовалось впоследствии всё существующее. В переносном смысле - беспорядок, неразбериха.

Хаосом интересуются физики, химики, биологи, математики, инженеры и др. Эти исследователи специализируются по системам, проявляющим турбулентность, трудно описываемым и носящим случайный характер, т. е. имеют дело с беспорядком. Однако здесь не обошлось без скептиков. Некоторые математики говорят, что теоретические методы изучения хаоса не являются строгими, основаны на ненадежных моделях и угрожают традиционным способам проверки решений. Тем не менее теория хаоса завоевала последователей и имеет своих защитников в каждом крупном университете или исследовательском центре. Эта теория предлагает подход к изучению систем, которые не поддаются описанию традиционными методами. Для многих ученых теория хаоса является еще одним способом решения очень трудных задач, которое требует свежих идей.

Со времен Ньютона ученые стремятся объяснить поведение сложной системы с помощью линейных (устанавливающих простую прямую зависимость) уравнений, которые устанавливают прямую пропорциональность между величиной, заданной на входе системы, и величиной, получаемой при этом на выходе системы. Если знать все переменные, считают они, и иметь достаточно мощный компьютер, чтобы учесть все неопределенности, то можно смоделировать (т. е. описать в математических терминах) любую систему, сколь бы сложной она ни была. Примером может быть долгосрочный прогноз погоды. Метеорологи были среди тех, кто думал, что новые суперкомпьютеры сделают долгосрочные предсказания погоды окончательно надежными, но так не произошло. Работая над компьютерными моделями погоды, метеоролог из Массачусетского технологического института Эдуард Лоренц показал, что модели хаотических систем четко зависят от начальных условий и мельчайших, но непредсказываемых переменных параметров - иными словами, погода по самой своей сути является хаотической.

В любой хаотической системе - от стремительного течения горной реки до среднегодовой численности саранчи на американском Среднем Западе - незначительное нарушение равновесия может привести к колоссальному изменению. "Очень малое возмущение, происшедшее в какое-то время, может заставить систему развиваться совсем не так, как без такого возмущения", - утверждает Лоренц. Среди ученых принято называть данное явление эффектом бабочки. Это название придумал Лоренц, когда в лекции, прочитанной им в 1970 г., он поставил перед слушателями интригующий вопрос: могло ли легкое порхание крыльев бабочки далеко в амазонских джунглях вызвать разрушительное торнадо в Техасе.

Закон истинности в хаосе:

«Любое хаотические (броуновское) движение приводит к образованию осмысленных пар. Пары стремятся к склеиванию. Или, с течением процесса, в нем появляется осмысленность и порядок. Хаос далеко (мириады и димиады световых лет), но мы знаем его закон. Значит мы оттуда, или были в нем».

В этих словах и заключается смысл важнейшей проблемы –Проблемы Выбора.

Возрастание энтропии

Энтропия (греч. en - в, внутрь, trope - поворот, превращение) - одна из величин, характеризующих тепловое состояние тела или системы тел; мера внутренней неупорядоченности системы; при всех процессах, происходящих в замкнутой системе, энтропия или возрастает (необратимые процессы), или остается постоянной (обратимые процессы).

Центральным понятием термодинамики является энтропия S. Энтропия - это функция состояния, дифференциал от которой равен приведенному теплу dS = dQ/T, где Q - количество тепла, Т - температура. Энтропия долго считалась тенью "царицы-энергии" W, ее загадочным двойником. Их поведение в замкнутой системе различно. Энергия в замкнутой системе не создается и не уничтожается. Она сохраняется и не может служить индикатором на изменения в системе (W = const). Энтропия же постоянно создается во всяком процессе перехода к равновесию. Поведение энтропии определяется вторым началом термодинамики или законом возрастания энтропии.

Рост энтропии не беспределен. Ее значение в равновесии максимально. Второе начало термодинамики - это закон и принцип отбора, ограничивающий физически реализуемые состояния, которые можно наблюдать или "приготовить". Закон запрещает создание "вечного двигателя 2-го рода".

Знаменитое второе начало (закон) термодинамики в формулировке немецкого физика Р. Клаузиуса звучит так: "Теплота не переходит самопроизвольно от холодного тела к более горячему". Закон сохранения и превращения энергии (первое начало термодинамики), в принципе, не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объеме.

Но в реальности это никогда не происходит. Данную односторонность, однонаправленность перераспределения энергии в замкнутых системах и подчеркивает второе начало термодинамики. Для отражения этого процесса в термодинамику было введено новое понятие "энтропия". Под энтропией стали понижать меру беспорядка системы. Более точная формулировка второго начала термодинамики приняла такой вид: при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает. Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это и есть наиболее простое состояние системы, или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу.

Однако, исходя из теории изменений Пригожина, энтропия не просто безостановочное соскальзывание системы к состоянию, лишенному какой бы то ни было организации. При определенных условиях энтропия

становится прародительницей порядка.

*Макроскопическое состояние той или иной термодинамической системы, состоящей из конечного множества элементов (атомов, молекул), традиционно характеризуется с помощью энтропии Больцмана (Е), статистически выражающей второе начало термодинамики и имеющей вид:

где: – постоянная Больцмана, а W – термодинамическая вероятность, представляющая собой число возможных микросостояний системы, посредством которых может быть реализовано данное макросостояние.

Заключение

Закон возрастания энтропии применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.

Вопросы связанные с энтропией в сложных системах и закон возрастания энтропии, дают возможность объективно воспринимать протекающие в природе процессы и определять возможности вмешательства в эти процессы.

Закон возрастания энтропии является частью второго начала термодинамики, которым обычно называется полученное опытным путем утверждение о невозможности построения вечного двигателя второго рода.

Список литературы

1. Ф.Ю. Зигель. Неисчерпаемость бесконечности. Москва, "Наука", 1984

2. П.Эткинс. Порядок и беспорядок в природе. Перевод с английского Ю.Г. Рудого. Москва, "Мир", 1987

3. Д.Лейзер. Создавая картину Вселенной. Перевод с английского С.А. Ламзина. Москва, "Мир", 1988

4. Дж. Нарликар. Неистовая Вселенная. Перевод с английского С.В. Будника. Москва, "Мир", 1985

Интегративность. Этот термин часто употребляют как синоним целостности. Однако им подчеркивают интерес не к внешним факторам проявления целостности, а к более глубоким причинам формирования этого свойства и, главное, - к его сохранению. Интегративными называют системообразующие, снстемоохраняющие факторы, важными среди которых являются неоднородность и противоречивость ее элементов.

Коммуникативность

Коммуникативность. Эта закономерность составляет основу определения системы, предложенного В. Н. Садовским и Э. Г. Юдиным в книге «Исследования по общей теории систем».

Любая система не изолирована от других систем и связана множеством коммуникаций с окружающей средой, которая представляет собой сложное и неоднородное образование, содержащее (рис.4.1):

    надсистему (систему более высокого порядка, задающую требования и ограничения рассматриваемой системе);

    элементы или подсистемы (нижележащие, подведомственные системы);

    системы одного уровня с рассматриваемой;

Рис. 4.1. Связи системы с надсистемой, подсистемами и системами

различного уровня

Иерархичность

Рассмотрим иерархичность как закономерность построения всего мира и любой выделенной из него системы. Иерархическая упорядоченность пронизывает все, начиная от атомно-молекулярного уровня и кончая человеческим обществом. Иерархичность как закономерность заключается в том, что закономерность целостности проявляется на каждом уровне иерархии. Благодаря этому на каждом уровне возникают новые свойства, которые не могут быть выведены как сумма свойств элементов. При этом важно, что не только объединение элементов в каждом узле приводит к появлению новых свойств, которых у них не было, и утрате некоторых свойств элементов, но и что каждый член иерархии приобретает новые свойства, отсутствующие у него в изолированном состоянии.

Таким образом, на каждом уровне иерархии происходят сложные качественные изменения, которые не всегда могут быть представлены и объяснены. Но именно благодаря этой особенности рассматриваемая закономерность приводит к интересным следствиям. Во-первых , с помощью иерархических представлений можно отображать системы с неопределенностью.

Во-вторых , построение иерархической структуры зависит от цели: для многоцелевых ситуаций можно построить несколько иерархических структур, соответствующих разным условиям, и при этом в разных структурах могут принимать участие одни и те же компоненты. В-третьих , даже при одной и той же цели, если поручить формирование иерархической структуры разным исследователям, то в зависимости от их предшествующего опыта, квалификации и знания системы они могут получить разные иерархические структуры, т. е. по-разному разрешить качественные изменения на каждом уровне иерархии.

Эквифинальность

Это одна из наименее исследованных закономерностей. Она характеризует предельные возможности систем определенного класса сложности. Л. фон Берталанфи, предложивший этот термин, определяет эквифинальность применительно к «открытой» системе как способность (в отличие от состояний равновесия в закрытых системах) полностью детерминированных начальными условиями систем достигать не зависящего от времени состояния (которое не зависит от ее исходных условий и определяется исключительно параметрами системы). Потребность во введении этого понятия возникает, начиная с некоторого уровня сложности, например биологические системы.

В настоящее время не исследован ряд вопросов этой закономерности: какие именно параметры в конкретных системах обеспечивают свойство эквивалентности? как обеспечивается это свойство? как проявляется закономерность эквивалентности в организационных системах?

Историчность

Время является непременной характеристикой системы, поэтому каждая система исторична, и это такая же закономерность, как целостность, интегративность и др. Легко привести примеры становления, расцвета, упадка и даже смерти биологических и общественных систем, но для технических и организационных систем определить периоды развития довольно трудно.

Основа закономерности историчности - внутренние противоречия между компонентами системы. Но как управлять развитием или хотя бы понимать приближение соответствующего периода развития системы - эти вопросы еще мало исследованы.

В последнее время на необходимость учета закономерности историчности начинают обращать больше внимания. В частности, в системотехнике при создании сложных технических комплексов требуется на стадии проектирования системы рассматривать не только вопросы разработки и обеспечения развития системы, но и вопрос, как и когда нужно ее уничтожить. Например, списание техники, особенно сложной - авиационной, «захоронение» ядерных установок и др.

В природе и обществе всем целостным системам свойственна известная внутренняя и внешняя упорядоченность, без которой невозможно их устойчивое бытие. Это - одно из коренных отличий всякой системы от хаотичного множества, обреченного на недолговечность.

Система, тем более общественная, может существовать, функционировать и развиваться только в упорядоченном виде, выражающем ее организованность и жизнеспособность. Свойством упорядоченности должны обладать и государственная система, и правовая система, и экономическая система, и любое общество в целом. Понимание этой объективной закономерности особенно важно в современных российских условиях.

В зависимости от ряда факторов упорядоченность общественных систем может находиться на разных ступенях совершенства, однако ни одна из них не в состоянии нормально существовать, если хотя бы в минимальной мере не налажена ее внутренняя организация и формы проявления во вне.

Упорядоченность общественных систем имеет экономическую, социальную, политическую (включая государственно-правовую) и духовную основы. Тем не менее, нельзя не согласиться с тем, что урегулированность и порядок являются одним из решающих условий жизнедеятельности любого общества.

Упорядоченность тех или иных систем может рассматриваться как следствие определенной регуляции, которая непрерывно происходит в природе и обществе. Такая регуляция фактически бывает двоякого рода: стихийная и сознательная, и они существенно отличаются друг от друга.

Когда упорядочение осуществляется под воздействием самопроизвольных факторов, оно оказывается усредненным результатом столкновения, перекрещивания и переплетения всей совокупности различных - закономерных и случайных, гармоничных и противоборствующих, повторяющихся и однократных и т.д. - сил, действующих помимо сознания и воли людей. Соответственно здесь имеет место стихийная регуляция, где нет взаимодействующих субъектов. Когда же, наоборот, упорядочение, так или иначе, опосредствовано человеческой волей, достигается при помощи целенаправленных операций, налицо сознательная регуляция, производимая соответствующим социальным субъектом.

Сознательная регуляция, в свою очередь, тоже неоднородна, имеет разновидности, каждая из которых достаточно специфична. Она выражается, прежде всего, в упорядочении тем или иным социальным субъектом собственного образа жизнедеятельности: человек, общность людей или их образования согласуют свое поведение с образцами, требованиями и установками, существующими в данном обществе. Здесь происходит целенаправленная саморегуляция, при которой ближайшим предметом регуляции является собственное поведение ее субъекта.

Но в человеческом обществе упорядочение тех или иных систем этим не исчерпывается. Давно известно всем и каждому, что если каждый отдельный музыкант сам управляет собой, то оркестр нуждается в дирижере. Как раз для такого "дирижирования" существует другая разновидность сознательной регуляции, предназначаемая для того, чтобы организовать слаженную жизнедеятельность всего "оркестра", т.е. соответствующих общественных систем.

Отличительная особенность только что отмеченного явления заключается в том, что здесь: во-первых, четко размежеваны субъект и предмет (объект) регуляции; во-вторых, регулирующий субъект выполняет функциональные задачи, руководствуясь определенными интересами; в-третьих, им в этих целях обязательно совершаются некие внешние операции, предпринимаемые для воздействия в заданном направлении на остальные слагаемые данной системы.

Соответственно эта разновидность сознательной регуляции выступает как специфическая деятельность, которую можно назвать социально-функциональным регулированием, отграничивая ее тем самым от стихийной регуляции, целенаправленной саморегуляции и всевозможных регулятивных операций технического характера.

Смысл указанной деятельности состоит, в первую очередь, в стабилизации упорядочиваемой системы, в сохранении ее жизнедеятельности, в ограждении от нежелательных воздействий временного, случайного или сугубо волевого порядка. Но весьма значима и ее способность повлиять на развитие, динамику общественной системы. В зависимости от цели субъекта регуляции, характера выбранной им программы и некоторых иных факторов социально-функциональное регулирование может повлиять на ход событий в том или ином направлении, ускоряя и укрепляя или, наоборот, замедляя и разрушая происходящие процессы.

Следовательно, в принципе общественные системы подвластны всем существующим разновидностям упорядочения. Стихийная регуляция, целенаправленная саморегуляция и социально-функциональное регулирование влияют на такие системы одновременно, дополняя и корректируя друг друга. Их фактическое соотношение и интенсивность исторически меняются, определяются степенью организованности того или иного общества, уровнем сознательности его членов, их менталитетом и характером той миссии, которая выполняется ими в естественноисторическом процессе. Это обстоятельство должно учитываться при изучении всей государственно-правовой действительности, а равно ее роли и места в жизнедеятельности общества.

Это необходимо тем более, если речь идет о возможности сочетания регулятивного и саморегулятивного начал в организации тех или иных отношений. Такое сочетание, к примеру, наблюдается при создании хозяйственных товариществ и обществ, когда их учредители (участники) в учредительных документах устанавливают общие правила жизнедеятельности создаваемых организаций, а затем сами же на саморегулятивных началах сообразуют с этими нормами свое поведение. Нечто подобное наблюдается и в договорных отношениях, где их участники, пользуясь принципом свободы договора, определяют в договоре правила поведения, которыми в дальнейшем сами же руководствуются. Но в аналогичной ситуации происходит не смешение правового регулирования с саморегуляцией, а их сочетание, необходимое для организации соответствующих жизненных отношений.

В общественных системах функциональная регуляция во многом сопряжена с социальным управлением. Их объединяют "людская природа", сознательное направление системы к заданной цели, сообразование этой цели с осознанными потребностями, ценностными ориентациями и т.д. Даже в современных условиях, когда в социальном управлении все шире используются экономико-математические методы, вычислительная техника, в нем решающими остаются общественные, "людские" факторы.

Вместе с тем между социальной регуляцией и социальным управлением существуют определенные различия. Давно подмечено, что регулирование общественных отношений выполняет роль одного из компонентов социального управления, существующего наряду с руководством, организацией, координацией и контролем, что управление следует соотнести не с любой сознательной регуляцией, а лишь с ее одной разновидностью - с функциональным регулированием. Каждый цикл управленческого процесса состоит из многочисленных операций (сбор и обработка информации об интересующем объекте, прогнозирование его тенденций, определение стратегии и тактики воздействия на него, выработка и принятие решения, организация его выполнения, контроль и др.), где функциональное регулирование фигурирует в роли стержневого элемента и способа достижения цели.

Социальное управление неизбежно предполагает непрерывное двустороннее взаимодействие двух подсистем, одна из которых является управляющей, другая - управляемой. Управляющая подсистема, играющая роль субъекта управления, - это кто и что управляет, управляемая подсистема, выступающая как социальный объект воздействия, - кто и что управляется.

В качестве социального объекта, т.е. управляемой подсистемы здесь выступают отдельные члены общества, их группы, коллективы, образования и естественноисторические общности, производственные и иные объединения, различные сферы жизнедеятельности людей, общество в целом. Причем каждый из них относится к классу больших смешанных объектов, заключает в себе, как правило, и людские, и вещные компоненты, исключительно сложен по количеству и строению образующих его элементов.

По существу те же социальные феномены представляют собой (разумеется, в иных связях) субъект организующего воздействия, управляющую подсистему. В обществе не наблюдается жесткого привязывания одних элементов к объекту, других - к субъекту управления. То, что в данном конкретном отношении является социальным объектом воздействия, в другом - становится его полнокровным субъектом. Например, местные и региональные организации, будучи социальным объектом управления со стороны вышестоящих органов, в то же время выступают в роли важного субъекта управления применительно ко всем тем, кто находится под их организующим влиянием.

Однако данное обстоятельство, показывающее сложность природы социальных организмов, не дает достаточного основания ни для отказа в выделении в структуре социального управления объекта и субъекта, ни для их смешения. Оно свидетельствует только о том, что эти организмы сочетают в себе свойства управляемой (организуемой) и управляющей (организующей) подсистем, способность в разных ситуациях быть как объектом, так и субъектом управления в зависимости от конкретных факторов, в первую очередь, от характера соответствующих социальных связей.

В рамках одного и того же общественного отношения ни один из элементов системы не может служить одновременно и управляющей (регулирующей), и управляемой (регулируемой) подсистемой.

История мировой цивилизации показывает, что управление в той или иной стране может осуществляться посредством определенных распоряжений (команд), политических директив, законов, различных их сочетаний и т.д. В недалеком прошлом в нашей стране наиболее характерным было директивное управление, при котором сначала партийными органами вырабатывались политические директивы, излагаемые в решениях съездов, пленумов и Центрального комитета КПСС, а на их основе принимались акты непосредственного управления. При этом роль права и государства в организации жизнедеятельности общества всячески принижалась.

Между тем западные страны давно перешли на рельсы управления посредством права, Закона. Именно этот путь способствует достижению наибольших результатов в обеспечении демократичности, экономичности и эффективности организации общественных отношений. И одна из фундаментальных задач России на современном этапе состоит как раз в переходе к такой системе управления с тем, чтобы остатки директивного управления заменить упорядочением жизненных отношений посредством права, Закона. Это в равной мере относится ко всем сферам жизнедеятельности общества, нуждающимся в юридическом воздействии.

Очень важно иметь в виду, что все общественные системы, так или иначе, включают в себя личность. Связанные с ними отношения происходят при участии человека, одаренного волей и сознанием. Человек вносит в эти отношения волевой, субъективный момент. Немыслимо ни одно общественное отношение, в котором объективное, закономерное не было бы каким-то образом соотнесено с субъективным, волевым. Как раз благодаря этому обстоятельству открывается возможность сознательной регуляции тех или иных общественных систем. Не было бы в них субъективного фактора, исключалась бы сознательная их регуляция, поскольку всякое регулятивное воздействие может осуществляться только через сознание людей.

Конечно, соотношение объективного (закономерного) и субъективного (волевого) моментов в разных сферах жизни общества не одинаково. Есть основания считать, что такое соотношение меняется в пользу субъективного по мере перехода от экономических к социальным, от социальных к политическим, от политических к духовным отношениям. Иначе говоря, в экономических отношениях наблюдается наименьшее субъективное и наибольшее объективное, а в духовных - наоборот. Однако, так или иначе, субъективный, волевой момент есть в любых общественных отношениях, в том числе в экономических, хотя здесь он весьма ограничен из-за преобладания закономерного фактора, не зависящего от воли человека.

При упорядочении общественных систем личность вовлекается в оба способа социальной регуляции - и в сознательную саморегуляцию, и в функциональное регулирование. Соответственно, для активной роли личности в этих процессах необходимы двоякого рода возможности, позволяющие, с одной стороны, совершенствовать начало саморегуляции, с другой - полнее участвовать в деятельности управляющей (организующей) подсистемы, в функциональном регулировании. Личность, кроме того, выступает в роли социального объекта регулятивного воздействия и, стало быть, ей важны свойства, расширяющие избирательную восприимчивость влияния извне.

Саморегулятивные и регулятивные возможности личности, а равно ее восприимчивость к внешнему воздействию имеют некоторые общие корни. Экономическая независимость, позитивные исторические традиции, гражданское общество, надлежащая общая и правовая культура, конституционное признание естественных прав и свобод, современный общий правовой статус, демократический политико-правовой режим и многое другое повышают роль личности в упорядочении общественных систем на уровнях и саморегуляции, и функционального регулирования, и восприятия регулятивного воздействия извне. И наоборот, отрицание частной собственности, отказ от признания естественных (неотъемлемых) прав и свобод, тоталитарный режим, низкие правовая культура и правовое сознание, негативные традиции прошлого и иные негативные обстоятельства существенно ограничивают возможности личности, связанные с упорядочением общественных систем, в которые она вовлечена.

Но есть и специфические факторы, касающиеся отдельных способов участия личности в упорядочении общественных систем. Для усиления саморегулятивных возможностей важны, например, гарантированность имеющихся прав и свобод, обеспеченность исполнения юридических обязанностей, децентрализация власти, существование самоуправления, а для регулятивных потенций - доступ к управлению делами общества, надлежащее определение статуса управляющих подсистем, налаженность взаимодействия между ними, борьба с бюрократизмом и коррупцией, отзывчивость и т.д.

Реальное задействование всех факторов повышения роли личности в упорядочении общественных отношений во многом способствует развитию в стране демократии в научном ее понимании.

Эта группа закономерностей тесно связана с закономерностью целостности, с расчленением целого на части. Однако она характеризует и взаимодействие системы с ее окружением – со средой (значимой или существенной для системы), надсистемой, подчиненными системами. Поэтому рассматриваемые ниже закономерности выделены в самостоятельный подраздел.

Коммуникативность . Эта закономерность составляет основу определения системы В. Н. Садовским и Э. Г. Юдиным , приведенного в параграфе 1.1, из которого следует, что система не изолирована от других систем, она связана множеством коммуникаций со средой, представляющей собой, в свою очередь, сложное и неоднородное образование, содержащее надсистему (систему более высокого порядка, задающую требования и ограничения исследуемой системе), подсистемы (нижележащие, подведомственные системы) и системы одного уровня с рассматриваемой.

Такое сложное единство со средой названо закономерностью коммуникативности, которая, в свою очередь, легко помогает перейти к иерархичности как закономерности построения всего мира и любой выделенной из него системы.

Иерархичность . Закономерность иерархичности, или иерархической упорядоченности, была в числе первых закономерностей теории систем, которые выделил и исследовал Л. фон Берталанфи . Он, в частности, показал связь иерархической упорядоченности мира с явлениями дифференциации и негэнтропийными тенденциями, т.е. с закономерностями самоорганизации, развития открытых систем, рассматриваемыми ниже. На выделении уровней иерархии природы базируются некоторые классификации систем и, в частности, рассмотренная классификация К. Боулдинга .

На необходимость учитывать не только внешнюю структурную сторону иерархии, но и функциональные взаимоотношения между уровнями обратил внимание академик В. А. Энгельгардт . На примерах биологических организаций он показал, что более высокий иерархический уровень оказывает направляющее воздействие на нижележащий уровень, подчиненный ему, и это влияние проявляется в том, что подчиненные члены иерархии приобретают новые свойства, отсутствовавшие у них в изолированном состоянии (подтверждение положения о влиянии целого на элементы, приведенного выше), а в результате появления этих свойств формируется новый, другой "облик целого" (влияние свойств элементов на целое). Возникшее таким образом новое целое приобретает способность осуществлять новые функции, в чем и состоит цель образования иерархий. Иными словами, речь идет о закономерности целостности (эмерджентности) и ее проявлении на каждом уровне иерархии.

Эти особенности иерархических структур систем (или, как принято иногда говорить, иерархических систем) наблюдаются не только на биологическом уровне развития Вселенной, но и в социальных организациях, при управлении предприятием, объединением, государством, при представлении замысла проектов сложных технических комплексов и т.п.

Исследование иерархической упорядоченности в организационных системах с использованием информационного подхода (см. гл. 3) позволили сделать вывод о том, что между уровнями и элементами иерархических систем существуют более сложные взаимосвязи, чем это может быть отражено в графическом изображении иерархической структуры. В частности, если даже между элементами одного уровня иерархии нет явных связей ("горизонтальных"), то они все равно взаимосвязаны через вышестоящий уровень.

Например, в производственной и организационной структурах предприятия от вышестоящего уровня зависит, какой из этих элементов будет выбран для поощрения (при предпочтении одних исключается поощрение других), или, напротив, какому из элементов будет поручена непрестижная или невыгодная работа (опять-таки, это освободит от нее других).

Таким образом, иерархические представления помогают лучше понять и исследовать феномен сложности.

Выделим основные особенности иерархической упорядоченности с точки зрения полезности их использования в качестве моделей системного анализа.

1. Закономерность коммуникативности проявляется между уровнями иерархии исследуемой системы, и поэтому каждый уровень иерархической упорядоченности имеет сложные взаимоотношения с вышестоящим и нижележащим уровнями.

По метафорической формулировке, используемой А. Кёстлером , каждый уровень иерархии обладает свойством "двуликого Януса": "лик", направленный в сторону нижележащего уровня, имеет характер автономного целого (системы), а "лик", направленный к узлу (вершине) вышестоящего уровня, проявляет свойства зависимой части (элемента вышестоящей системы, каковой является для него составляющая вышестоящего уровня, которой он подчинен).

Эта конкретизация закономерности иерархичности объясняет неоднозначность использования в сложных организационных системах понятий "система" и "подсистема", "цель" и "средство" (элемент каждого уровня иерархической структуры целей выступает как цель по отношению к нижележащим и как "подцель", а начиная с некоторого уровня, и как "средство" по отношению к вышестоящей цели), что часто наблюдается, как отмечалось выше, в реальных условиях и приводит к некорректным терминологическим спорам.

2. Закономерность целостности (т.е. качественные изменения свойств компонентов более высокого уровня по сравнению с объединяемыми компонентами нижележащего) проявляется в ней на каждом уровне иерархии.

При этом объединение элементов в каждом узле иерархической структуры приводит не только к появлению новых свойств у узла и утрате объединяемыми компонентами свободы проявления некоторых своих свойств, но и к тому, что каждый подчиненный член иерархии приобретает новые свойства, отсутствовавшие у него в изолированном состоянии.

Благодаря этой особенности с помощью иерархических представлений можно исследовать системы и проблемные ситуации с неопределенностью.

3. Одну и ту же систему можно представить разными иерархическими структурами.

Причем это зависит от: а) назначения системы, цели (разные иерархические структуры могут соответствовать разным формулировкам цели); б) методики структуризации; в) предыстории развития лиц, формирующих структуру (при одной и той же цели, если поручить формирование структуры разным лицам, то они в зависимости от их предшествующего опыта, квалификации и знания объекта могут получить разные структуры, т.е. по-разному раскрыть неопределенность проблемной ситуации).

4. Благодаря рассмотренным особенностям, иерархические представления являются средством исследования систем с неопределенностью: происходит как бы расчленение "большой" неопределенности на более "мелкие", лучше поддающиеся исследованию.

При этом даже если эти "мелкие неопределенности" не удается полностью раскрыть и объяснить, то все же иерархическое упорядочение частично снимает общую неопределенность, обеспечивает, по крайней мере, управляемый контроль принятия решения, для которого используется иерархическое представление.

В связи со сказанным выше на этапе структуризации системы (или ее цели) можно (и нужно) ставить задачу выбора варианта структуры для дальнейшего исследования или проектирования системы, организации управления технологическим процессом, предприятием, проектом и т.д. Для того чтобы помочь в решении подобных задач, разрабатывают методики структуризации, методы оценки и сравнительного анализа структур, примеры которых будут рассмотрены в последующих главах.

  • Энгельгардт, В. А. О некоторых атрибутах жизни: иерархия, интеграция, узнавание / В. А. Энгельгардт // Вопросы философии. –1976. – № 7. – С. 65–81.
  • Koescler, A. Beyond Atomisme and Holism / A. Koestler // Beyond Reductionism. – London, 1969. – 197 p.

1. Основные понятия теории систем (определение системы, внешней среды, объекта, элемента; системы представлений)

Система - это полный, целостный набор элементов (компонентов), взаимосвязанных и взаимодействующих между собой так, чтобы могла реализоваться функция системы.

Исследование объекта как системы предполагает использование ряда систем представлений (категорий) среди которых основными являются:

Структурное представление связано с выделением элементов системы и связей между ними.

Функциональные представление систем - выделение совокупности функций (целенаправленных действий) системы и её компонентов направленное на достижение определённой цели.

Макроскопическое представление - понимание системы как нерасчленимого целого, взаимодействующего с внешней средой.

Микроскопическое представление основано на рассмотрении системы как совокупности взаимосвязанных элементов. Оно предполагает раскрытие структуры системы.

Иерархическое представление основано на понятии подсистемы, получаемом при разложении (декомпозиции) системы, обладающей системными свойствами, которые следует отличать от её элемента - неделимого на более мелкие части (с точки зрения решаемой задачи). Система может быть представлена в виду совокупностей подсистем различных уровней, составляющую системную иерархию, которая замыкается снизу только элементами.

Процессуальное представление предполагает понимание системного объекта как динамического объекта, характеризующегося последовательностью его состояний во времени.

Объектом познания является честь реального мира, которая выделяется и воспринимается как единая целая в течении длительного времени. Объект может быть материальным или абстрактым, естественным или искусственным. Объект обладает бесконечным набором свойств. Но на практике необходим ограниченный набор свойств, которые нам важны.

Внешняя среда - Понятие «система» возникает там и тогда, где и когда мы материально или умозрительно проводим замкнутую границу между неограниченным или некоторым ограниченным множеством элементов. Те элементы с их соответствующей взаимной обусловленностью, которые попадают внутрь, - образуют систему.

Те элементы, которые остались за пределами границы, образуют множество, называемое в теории систем «системным окружением» или просто «окружением», или «внешней средой».

Из этих рассуждений вытекает, что немыслимо рассматривать систему без ее внешней среды. Система формирует и проявляет свои свойства в процессе взаимодействия с окружением, являясь при этом ведущим компонентом этого воздействия.

В зависимости от воздействия на окружение и характер взаимодействия с другими системами функции систем можно расположить по возрастающему рангу следующим образом:

пассивное существование;

материал для других систем;

обслуживание систем более высокого порядка;

противостояние другим системам (выживание);

поглощение других систем (экспансия);

преобразование других систем и сред (активная роль).

Всякая система может рассматриваться, с одной стороны, как подсистема более высокого порядка (надсистемы), а с другой, как надсистема системы более низкого порядка (подсистема). Например, система «производственный цех» входит как подсистема в систему более высокого ранга - «фирма». В свою очередь, надсистема «фирма» может являться подсистемой «корпорации».

Обычно в качестве подсистем фигурирует более или менее самостоятельные части систем, выделяемые по определённым признакам, обладающие относительной самостоятельностью, определённой степенью свободы.

Компонент - любая часть системы, вступающая в определённые отношения с другими частями (подсистемами, элементами).

Элементом с истемы является часть системы с однозначно определёнными свойствами, выполняющие определённые функции и не подлежащие дальнейшему разбиению в рамках решаемой задачи (с точки зрения исследователя).

Понятие элемент, подсистема, система взаимопреобразуемы, система может рассматриваться как элемент системы более высокого порядка (метасистема), а элемент при углубленном анализе, как система. То обстоятельство, что любая подсистема является одновременно и относительно самостоятельной системой приводит к 2 аспектам изучения систем: на макро- и микро- уровнях.

При изучение на макроуровне основное внимание уделяется взаимодействию системы с внешней средой. Причём системы более высокого уровня можно рассматривать как часть внешней среды. При таком подходе главными факторами являются целевая функция системы (цель), условия её функционирования. При этом элементы системы изучаются с точки зрения организации их в единое целое, влияние на функции системы в целом.

На микроуровне основными становятся внутренние характеристики системы, характер взаимодействия элементов между собой, их свойства и условия функционирования.

Для изучения системы сочетаются оба компонента.

2. Понятия структуры системы. Связи и их виды.

Под структурой системы понимается устойчивое множество отношений, которое сохраняется длительное время неизменным, по крайней мере в течение интервала наблюдения. Структура системы опережает определенный уровень сложности по составу отношений на множестве элементов системы или что эквивалентно, уровень разнообразий проявлений объекта.

Связи - это элементы, осуществляющие непосредственное взаимодействие между элементами (или подсистемами) системы, а также с элементами и подсистемами окружения.

Связь - одно из фундаментальных понятий в системном подходе. Система как единое целое существует именно благодаря наличию связей между ее элементами, т.е., иными словами, связи выражают законы функционирования системы. Связи различают по характеру взаимосвязи как прямые и обратные, а по виду проявления (описания) как детерминированные и вероятностные.

Прямые связи предназначены для заданной функциональной передачи вещества, энергии, информации или их комбинаций - от одного элемента к другому в направлении основного процесса.

Обратные связи, в основном, выполняют осведомляющие функции, отражая изменение состояния системы в результате управляющего воздействия на нее. Открытие принципа обратной связи явилось выдающимся событием в развитии техники и имело исключительно важные последствия. Процессы управления, адаптации, саморегулирования, самоорганизации, развития невозможны без использования обратных связей.

Рис. - Пример обратной связи

С помощью обратной связи сигнал (информация) с выхода системы (объекта управления) передается в орган управления. Здесь этот сигнал, содержащий информации о работе, выполненной объектом управления, сравнивается с сигналом, задающим содержание и объем работы (например, план). В случае возникновения рассогласования между фактическим и плановым состоянием работы принимаются меры по его устранению.

Основными функциями обратной связи являются:

противодействие тому, что делает сама система, когда она выходит за установленные пределы (например, реагирование на снижение качества);

компенсация возмущений и поддержание состояния устойчивого равновесия системы (например, неполадки в работе оборудования);

синтезирование внешних и внутренних возмущений, стремящихся вывести систему из состояния устойчивого равновесия, сведение этих возмущений к отклонениям одной или нескольких управляемых величин (например, выработка управляющих команд на одновременное появление нового конкурента и снижение качества выпускаемой продукции);

выработка управляющих воздействий на объект управления по плохо формализуемому закону. Например, установление более высокой цены на энергоносители вызывает в деятельности различных организаций сложные изменения, меняют конечные результаты их функционирования, требуют внесения изменений в производственно-хозяйственный процесс путем воздействий, которые невозможно описать с помощью аналитических выражений.

Нарушение обратных связей в социально-экономических системах по различным причинам ведет к тяжелым последствиям. Отдельные локальные системы утрачивают способность к эволюции и тонкому восприятию намечающихся новых тенденций, перспективному развитию и научно обоснованному прогнозированию своей деятельности на длительный период времени, эффективному приспособлению к постоянно меняющимся условиям внешней среды.

Особенностью социально-экономических систем является то обстоятельство, что не всегда удается четко выразить обратные связи, которые в них, как правило, длинные, проходят через целый ряд промежуточных звеньев, и четкий их просмотр затруднен. Сами управляемые величины нередко не поддаются ясному определению, и трудно установить множество ограничений, накладываемых на параметры управляемых величин. Не всегда известны также действительные причины выхода управляемых переменных за установленные пределы.

Детерминированная (жесткая) связь , как правило, однозначно определяет причину и следствие, дает четко обусловленную формулу взаимодействия элементов. Вероятностная (гибкая) связь - Определяет неявную и косвенную зависимость между элементами. Теория вероятности предлагает специальный математический аппарат для исследования этих связей, называемый корреляционный анализ.

Критерии - это признаки, по которым производится оценка соответствия функционирования системы её цели при заданных ограничениях

Эффективность системы - соотношение между целевым результатом функционирования и фактически реализованным.

Часто на входе и выходе присутствуют ограничения - обеспечивает соответствие между выходом системы и требованиями ко входу в последующую систему. Если требования не выполняются, ограничение не пропускает его через себя, то есть, работает по принципу фильтра.

Состоянием системы называется совокупность существенных свойств, которыми система обладает в текущий момент.

3. Основные свойства систем.(6 свойств).

Под свойством понимают сторону объекта (его характеристику), обуславливающую его отличие или сходство с другим объектом, либо проявляющиеся при взаимодействии.

Из определения системы следует, что главным свойством является целостность или единство, обеспечиваемое взаимосвязями между компонентами и проявляющееся в возникновении новых свойств, которыми отдельные элементы не обладают.

Это свойство называют свойством эмержентности.

Эмержентность - свойство систем, обуславливающее появление новых свойств и качеств, не присущих отдельным элементам системы. В основе лежит принцип, противоположный редукционизму, который утверждает, что целое можно изучать, разделив его на части и затем, определив свойства частей, определить свойства целого.

Целостность - каждый элемент системы вносит свой вклад в реализацию цели системы.

Целостность и эмержентность - интегративные свойства системы.

Целостность заключается в том, что каждый из компонент обеспечивает собственную закономерность функциональности и достижения цели.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность - сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность - это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность - это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения - действия, изменений, функционирования и т.д. Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения. Процесс целенаправленного изменения во времени состояния системы называется поведением. В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Еще одним свойством является свойство роста (развития ). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы. Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость. Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность - свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть - как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость - свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

4. Классификация систем по содержанию. Дайте краткое описание каждого класса.

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы : системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий. Искусственные делятся на технические (технико-экономические) и социальные (общественные). Техническая система спроектирована и изготовлена человеком в определенных целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей - организационно-технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой . Примеры человеко-машинных систем: автомобиль - водитель; самолет - летчик; ЭВМ - пользователь и т.д.

Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата. Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека. Их настроение - необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.
Абстрактные системы разделяют
на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым - концептуальные системы (теории методологического построения) и языки.

5. Классификация систем на 9 групп. Дайте краткое описание каждого класса.

Открытой называют систему, взаимодействующую с окружающей средой. Все реальные системы являются открытыми. При описании структуры таких систем, внешние коммуникационные каналы стараются разделить на входные и выходные.

У открытой системы по крайней мере 1 элемент имеет связь с внешней средой.

В реальной системе количество взаимосвязей огромно. Поэтому одной из задач исследователя является выделение и включение в систему только существенных связей. Несущественные отбрасываются.

Закрытая система - та, которая не взаимодействует со средой, либо взаимодействует с ней строго определённым образом. Во втором случае существую входные каналы, но воздействие среды носит неизменный характер и заранее полностью известно. В таком случае, такие воздействия относят непосредственно к системе, что позволяет рассматривать её как закрытую.

Комбинированные системы содержат в себе открытые и закрытые подсистемы. То есть, в них можно выделить одну или несколько подсистем, взаимодействуя с окружающей средой, а остальные подсистемы являются закрытыми.

Простые системы - не имеют разветвлённых структур и состоят из небольшого количества взаимосвязей и элементов. Служит для выполнения простейших функций, в них нельзя выделить иерархических уровней. Отличительной особенностью является детерминированность (чёткая определённость) номенклатуры, числа элементов и внутренних и внешних связей.

Сложные - содержат большое число элементов и внутренних связей, отличаются структурным разнообразием. Выполняет сложную функцию или ряд функций. Могут быть легко поделены на подсистемы. Систему называют сложной, если для её познания требуют привлечения нескольких научных дисциплин, теорий, моделей, а также, учёта неопределённости.

Модель - некое описание (математическое, вербальное, и т. д.) системы или подсистемы, отражающее группу и её свойство.

Систему называют сложной, если в действительности существенно проявляются следующие признаки сложности:

Структурная сложность

Основные понятия связей:

Структурные

Иерархические

Функциональные

Каузальные (причинно-следственные)

Информационные

Пространственно-временные

Сложность функционирования (поведения)

Сложность выбора поведения.В многоальтернативных ситуациях выбор поведения определяется целью системы.

Сложность развития.

Определяется характеристиками эволюционных или стохастических процессов.

Эти признаки следует рассматривать во взаимосвязи. Сложным системам присущи слабая предсказуемость, скрытность, и разнообразие возможных состояний.

Большой системой называют такую систему, которую невозможно наблюдать одновременно с позиции одного наблюдателя во времени и пространстве. То есть, для неё существенен пространственный фактор. Число её подсистем очень велико, а состав разнороден. При анализе и синтезе больших и сложных систем основополагающими являются процедуры декомпозиции и агрегирования.

Для специализированных систем характерна единственность назначения и узкая специализация обслуживающего персонала. В универсальных системах множество действий также выполняется на единой структуре, однако, состав функций по их виду и количеству менее однороден.

Автоматические - однозначно реагируют на ограниченный набор внешних взаимодействий. Внутренняя организация имеет несколько равновесных состояний.

Решающие - имеют постояннные критерии различения внешних воздействий и постоянные реакции на них.

Самоорганизующиеся - имеют гибкие критерии различения и гибкие реакции на внешние воздействия. Могут приспосабливаться к воздействиям. Обладают признаками диффузных систем, стохастичностью поведения и нестабильностью параметров и процессов. Способны незначительно изменять структуру. Например: биологические организации, коллективное поведение людей и т. д. Если по своей устойчивости превосходит внешние воздействия, то это предвидящие системы . То есть, могут предвидеть дальнейший ход событий.

Превращающиеся системы - воображаемые сложные системы на высшем уровне сложности, не связанные постоянством существующих носителей. Они могут менять вещественные носители и свою структуру, сохраняя индивидуальность.

Детерминированными называют системы, для которых их состояние однозначно определяется начальным моментом и может быть предсказано для любого последующего момента времени. Стохастические системы - системы, изменения в которых носит случайный характер. В этом случае, начальных данных для предсказания недостаточно.

Систему называют централизованной, если одной из её части принадлежит доминирующая (центральная) роль, которая и определяет функционирование.

Децентрализованными системами называют те системы, в которых компоненты одинаково значимы.

В производящих системах реализуются процессы получения продуктов или услуг. Такие системы делятся на вещественно-энергетические и информационные.

Управляющие системы - занимаются организацией и управлением вещественно-энергетических и информационных процессов.

Обслуживающие системы - занимаются поддержкой работоспособности производящих и управляющих систем.

6. Назовите закономерности взаимодействия части и целого (2). Дайте краткую характеристику каждой закономерности.

Прогрессирующая систематизация

d > B

Прогрессирующая факторизация

Аддитивность (суммативность)

Закономерность целостности/ эмержентности проявляется в системе в появлении у нее новых свойств, отсутствующих у элементов. Для того чтобы глубже понять закономерность целостности, необходимо, прежде всего, учитывать две ее стороны:

свойства системы (целого) Qs не является простой суммой свойств составляющих ее элементов (частей):

Qs ≠ ∑Qi

свойства системы (целого) зависят от свойств составляющих ее элементов (частей):

Qs = f(qi)

Кроме этих двух основных сторон, следует иметь в виду, что объединенные в систему элементы, как правило, утрачивают часть своих свойств, присущих им вне системы, т.е. система как бы подавляет ряд свойств элементов. Но, с другой стороны, элементы, попав в систему, могут приобрести новые свойства.

Обратимся к закономерности, двойственной по отношению к закономерности целостности. Ее называют физической аддитивностью, независимостью, суммативностью, обособленностью. Свойство физической аддитивности проявляются у системы, как бы распавшейся на независимые элементы; тогда становится справедливым

Qs = ∑Qi

В этом крайнем случае и говорить о системе уже нельзя.

Рассмотрим промежуточные варианты - две сопряженные закономерности, которые можно назвать прогрессирующей факторизацией - стремлением системы к состоянию с все более независимыми элементами, и прогрессирующей систематизацией - стремлением системы к уменьшению самостоятельности элементов, т. е. к большей целостности.

Интегративность - Этот термин часто употребляется как синоним целостности. Однако некоторые исследователи выделяют эту закономерность как самостоятельную, стремясь подчеркнуть интерес не к внешним факторам проявления целостности, а к более глубоким причинам, обусловливающим возникновение этого свойства, к факторам, обеспечивающим сохранение целостности.

Интегративными называют системообразующие, системосохраняющие факторы, в числе которых важную роль играют неоднородность и противоречивость элементов (исследуемые большинством философов), с одной стороны, и стремление их вступать в коалиции - с другой.

7. Назовите закономерности иерархической упорядоченности (2). Дайте краткую характеристику каждой закономерности.

Эта группа закономерностей характеризует и взаимодействие системы с ее окружением - со средой (значимой или существенной для системы), надсистемой, подчиненными системами.

Коммуникативность - Эта закономерность составляет основу определения системы, где система не изолирована от других систем, она связана множеством коммуникаций со средой, представляющей собой, в свою очередь, сложное и неоднородное образование, содержащее надсистему (метасистему - систему более высокого порядка, задающую требования и ограничения исследуемой системе), подсистемы (нижележащие, подведомственные системы), и системы одного уровня с рассматриваемой.

Такое сложное единство со средой названо закономерностью коммуникативности, которая, в свою очередь легко помогает перейти к иерархичности как закономерности построения всего мира и любой выделенной из него системы.

Иерархичность - Закономерности иерархичности или иерархической упорядоченности были в числе первых закономерностей теории систем, которые выделил и исследовал Л. фон. Берталанфи. Необходимо учитывать не только внешнюю структурную сторону иерархии, но и функциональные взаимоотношения между уровнями. Например, в биологических организациях более высокий иерархический уровень оказывает направляющее воздействие на нижележащий уровень, подчиненный ему, и это воздействие проявляется в том, что подчиненные члены иерархии приобретают новые свойства, отсутствовавшие у них в изолированном состоянии (подтверждение положения о влиянии целого на элементы, приведенного выше), а в результате появления этих новых свойств формируется новый, другой «облик целого» (влияние свойств элементов на целое). Возникшее таким образом новое целое приобретает способность осуществлять новые функции, в чем и состоит цель образования иерархий.

Основными особенностями иерархической упорядоченности являются:

Непосредственное взаимодействие системы с вышестоящими и нижележащими уровнями. В этом случае появляется понятие надсистемы и подсистемы, цель для общего уровня (для высоких уровней) , подцель(для низких и средних уровней) и средство (для нижележащих)

Закономерность целостности и эмержентности проявляется на каждом уровне иерархии.

8. Назовите закономерности осуществимости систем. Дайте краткую характеристику каждой закономерности.

Проблема осуществимости систем является наименее исследованной. Рассмотрим некоторые из закономерностей, помогающие понять эту проблему и учитывать ее при определении принципов проектирования и организации функционирования систем управления.

Эквифинальность - Эта закономерность характеризует как бы предельные возможности системы. Л. фон Берталанфи, предложивший этот термин, определил эквифинальность как «способность в отличие от состояния равновесия в закрытых системах, полностью детерминированных начальными условиями,... достигать не зависящего от времени состояния, которое не зависит от ее начальных условий и определяется исключительно параметрами системы». В соответствии с данной закономерностью система может достигнуть требуемого конечного состояния, не зависящего от времени и определяемого исключительно собственными характеристиками системы при различных начальных условиях и различными путями. Это форма устойчивости по отношению к начальным и граничным условиям.

Закон «необходимого разнообразия» - На необходимость учитывать предельную осуществимость системы при создании впервые в теории систем обратил внимание У.Р. Эшби. Он сформулировал закономерность, известную под названием закон «необходимого разнообразия». Для задач принятия решений наиболее важным является одно из следствий этой закономерности, которое можно упрощенно пояснить на следующем примере.

Когда исследователь (ЛПР - лицо, принимающее решение, наблюдатель) N сталкивается с проблемой D, решение которой для него неочевидно, то имеет место некоторое разнообразие возможных решений Vd. Этому разнообразию противостоит разнообразие мыслей исследователя (наблюдателя) Vn. Задача исследователя заключается в том, чтобы свести разнообразие Vd - Vn к минимуму, в идеале - к 0.

Эшби доказал теорему, на основе которой формулируется следующий вывод: «Если Vd дано постоянное значение, то Vd - Vn может быть уменьшено лишь за счет соответствующего роста Vn. только разнообразие в N может уменьшить разнообразие, создаваемое в D; только разнообразие может уничтожить разнообразие».

Применительно к системам управления закон «необходимого разнообразия» может быть сформулирован следующим образом: разнообразие управляющей системы (системы управления) Vsu должно быть больше (или, по крайней мере, равно) разнообразию управляемого объекта Vou:

Vsu > Vou.

Возможны следующие пути совершенствования управления при усложнении производственных процессов:

увеличение Vsu, что может быть достигнуто путем роста численности аппарата управления, повышения его квалификации, механизации и автоматизации управленческих работ;

уменьшение Vou, за счет установления более четких и определенных правил поведения компонентов системы: унификация, стандартизация, типизация, введение поточного производства, сокращение номенклатуры деталей, узлов, технологической оснастки и т.п.;

снижение уровня требований к управлению, т.е. сокращение числа постоянно контролируемых и регулируемых параметров управляемой системы;

самоорганизация объектов управления путем ограничения контролируемых параметров с помощью создания саморегулирующихся подразделений (цехов, участков с замкнутым циклом производства, с относительной самостоятельностью и ограничением вмешательства централизованных органов управления предприятием и т.п.).

9. Назовите закономерности развития систем (2). Дайте краткую характеристику каждой закономерности.

В последнее время все больше начинает осознаваться необходимость учета при моделировании систем принципов их изменения во времени, для понимания которых могут помочь рассматриваемые ниже закономерности.

Историчность - Хотя, казалось бы, очевидно, что любая система не может быть неизменной, что она не только возникает, функционирует, развивается, но и погибает, и каждый легко может привести примеры становления, расцвета, упадка (старения) и даже смерти (гибели) биологических и социальных систем, все же для конкретных случаев развития организационных систем и сложных технических комплексов трудно определить эти периоды. Не всегда руководители организаций и конструкторы технических систем учитывают, что время является непременной характеристикой системы, что каждая система подчиняется закономерности историчности, и что эта закономерность - такая же объективная, как целостность, иерархическая упорядоченность и др. При этом закономерность историчности можно учитывать не только пассивно, фиксируя старение, но и использовать для предупреждения «смерти» системы, разрабатывая «механизмы» реконструкции, реорганизации системы для сохранения ее в новом качестве.

Закономерность самоорганизации- В числе основных особенностей самоорганизующихся систем с активными элементами названы способность противостоять энтропийным (энтропия в данном случае - степень неопределенности, непредсказуемости состояния системы и внешней среды) тенденциям, способность адаптироваться к изменяющимся условиям, преобразуя при необходимости свою структуру и т.п. В основе этих внешне проявляющихся способностей лежит более глубокая закономерность, базирующаяся на сочетании в любой реальной развивающейся системе двух противоречивых тенденций: с одной стороны, для всех явлений, в том числе и для развивающихся, открытых систем справедлив второй закон термодинамики («второе начало»), т.е. стремление к возрастанию энтропии; а с другой стороны, наблюдаются негэнтропийные (противоположные энтропийным) тенденции, лежащие в основе эволюции.

Важные результаты в понимании закономерности самоорганизации получены в исследованиях, которые относят к развивающейся науке, называемой синергетикой.

10. Что такое синергетика? Для чего она служит? Дайте краткое описание 9 главных принципов синергетического подхода.

Синергетикой называют междисциплинарное научное направление, изучающее универсальные закономерности процессов самоорганизации, эволюции и кооперации. Ее цель состоит в построении общей теории сложных систем, обладающих особыми свойствами. В отличие от простых, сложные системы имеют следующие основные характеристики:

множество неоднородных компонентов;

активность (целенаправленность) компонентов;

множество различных, параллельно проявляющихся взаимосвязей между компонентами;

семиотическая (слабоформализуемая) природа взаимосвязей;

кооперативное поведение компонентов;

открытость;

распределенность;

динамичность, обучаемость, эволюционный потенциал;

неопределенность параметров среды.

Особое место в синергетике занимают вопросы спонтанного образования упорядоченных структур различной природы в процессах взаимодействия, когда исходные системы находятся в неустойчивых состояниях. Следуя ученому И.Пригожину, ее можно кратко охарактеризовать как «комплекс наук о возникающих системах».

Согласно синергетическим моделям, эволюция системы сводится к последовательности неравновесных фазовых переходов. Принцип развития формулируется как последовательное прохождение критических областей (точек бифуркаций (раздвоения, разветвления)). Вблизи точек бифуркации наблюдается резкое усиление флуктуации (от лат. fluctuatio - колебание, отклонение). Выбор, по которому пойдет развитие после бифуркации, определяется в момент неустойчивости. Поэтому зона бифуркации характеризуется принципиальной непредсказуемостью - неизвестно, станет ли дальнейшее развитие системы хаотическим или родится новая, более упорядоченная структура. Здесь резко возрастает роль неопределенности: случайность на входе в неравновесной ситуации может дать на выходе катастрофические последствия. В то же время, сама возможность спонтанного возникновения порядка из хаоса - важнейший момент процесса самоорганизации в сложной системе.

Главные принципы синергетического подхода в современной науке таковы:

Принцип дополнительности Н. Бора. В сложных системах возникает необходимость сочетания различных, ранее казавшихся несовместимыми, а ныне взаимодополняющих друг друга моделей и методов описания.

Принцип спонтанного возникновения И. Пригожина. В сложных системах возможны особые критические состояния, когда малейшие флуктуации могут внезапно привести к появлению новых структур, полностью отличающихся от обычных (в частности, это может вести к катастрофическим последствиям - эффекты «снежного кома» или эпидемии).

Принцип несовместимости Л. Заде . При росте сложности системы уменьшается возможность ее точного описания вплоть до некоторого порога, за которым точность и релевантность (смысловая связанность) информации становятся несовместимыми, взаимно исключающими характеристиками.

Принцип управления неопределенностями. В сложных системах требуется переход от борьбы с неопределенностями к управлению неопределенностями. Различные виды неопределенности должны преднамеренно вводиться в модель исследуемой системы, поскольку они служат фактором, благоприятствующим инновациям (системным мутациям).

Принцип незнания . Знания о сложных системах принципиально являются неполными, неточными и противоречивыми: они обычно формируются не на основе логически строгих понятий и суждений, а исходя из индивидуальных мнений и коллективных идей. Поэтому в подобных системах важную роль играет моделирование частичного знания и незнания.

Принцип соответствия . Язык описания сложной системы должен соответствовать характеру располагаемой о ней информации (уровню знаний или неопределенности). Точные логико-математические, синтаксические модели не являются универсальным языком, также важны нестрогие, приближенные, семиотические модели и неформальные методы. Один и тот же объект может описываться семейством языков различной жесткости.

Принцип разнообразия путей развития . Развитие сложной системы многовариантно и альтернативно, существует «спектр» путей ее эволюции. Переломный критический момент неопределенности будущего развития сложной системы связан с наличием зон бифуркации - «разветвления» возможных путей эволюции системы.

Принцип единства и взаимопереходов порядка и хаоса . Эволюция сложной системы проходит через неустойчивость; хаос не только разрушителен, но и конструктивен. Организационное развитие сложных систем предполагает своего рода конъюнкцию порядка и хаоса.

Принцип колебательной (пульсирующей) эволюции. Процесс эволюции сложной системы носит не поступательный, а циклический или волновой характер: он сочетает в себе дивергентные (рост разнообразия) и конвергентные (свертывание разнообразия) тенденции, фазы зарождения порядка и поддержания порядка. Открытые сложные системы пульсируют: дифференциация сменяется интеграцией, разбегание - сближением, ослабление связей - их усилением и т, п.

Нетрудно понять, что перечисленные принципы синергетической методологии можно разбить на три группы: принципы сложности (1-3), принципы неопределенности (3-6) и принципы эволюции (7-9).

11. Назовите закономерности возникновения и формулирования целей (4). Дайте краткую характеристику каждой закономерности.

Обобщение результатов исследований процессов целеобразования, проводимых философами, психологами, кибернетиками, и наблюдение процессов обоснования и структуризации целей в конкретных условиях позволили сформулировать некоторые общие принципы, закономерности, которые полезно использовать на практике.

Зависимость представления о цели и формулировки цели от стадии познания объекта (процесса) и от времени - Анализ определений понятия «цель» позволяет сделать вывод о том, что, формулируя цель нужно стремиться отразить в формулировке или в способе представления цели основное противоречие: ее активную роль в познании, в управлении, и в то же время необходимость сделать ее реалистичной, направить с ее помощью деятельность на получение определенного полезного результата. При этом формулировка цели и представление о цели зависит от стадии познания объекта, и по мере развития представления о нем цель может переформулироваться.

Зависимость цели от внешних и внутренних факторов - При анализе причин возникновения и формулирования целей нужно учитывать, что на цель влияют как внешние по отношению к системе факторы (внешние требования, потребности, мотивы, программы), так и внутренние факторы (потребности, мотивы, программы самой системы и ее элементов, исполнителей цели); при этом последние являются такими же объективно влияющими на процесс целеобразования факторами, как и внешние (особенно при использовании в системах управления понятия цели как средства побуждения к действию).

Проявление в структуре целей закономерности целостности - В иерархической структуре закономерность целостности (эмерджентности) проявляется на любом уровне иерархии. Применительно к структуре целей это означает, что, с одной стороны, достижение цели вышестоящего уровня не может быть полностью обеспечено достижением подчиненных ей подцелей, хотя и зависит от них, а, с другой стороны, потребности, программы (как внешние, так и внутренние) нужно исследовать на каждом уровне структуризации, и получаемые разными ЛПР расчленения подцелей в силу различного раскрытия неопределенности могут оказаться разными, т.е. разные ЛПР могут предложить разные иерархические структуры целей и функций, даже при использовании одних и тех же принципов структуризации и методик.

Закономерности формирования иерархических структур целей - Учитывая, что наиболее распространенным способом представления целей в системах организационного управления являются древовидные иерархические структуры («деревья целей»), рассмотрим основные рекомендации по их формированию:

приемы, применяющиеся при формировании древовидных иерархий целей, можно свести к двум подходам: а) формирование структур «сверху» - методы структуризации, декомпозиции, целевой или целенаправленный подход, б) формирование структур целей «снизу» - морфологический, лингвистический, тезаурусный, терминальный подход; на практике обычно эти подходы сочетаются;

цели нижележащего уровня иерархии можно рассматривать как средства для достижения целей вышестоящего уровня, при этом они же являются целями для уровня нижележащего по отношению к ним;

в иерархической структуре по мере перехода с верхнего уровня на нижний происходит как бы смещение рассмотренной выше «шкалы» от цели-направления (цели-идеала, цели-мечты) к конкретным целям и функциям, которые на нижних уровнях структуры могут выражаться в виде ожидаемых результатов конкретной работы с указанием критериев оценки ее выполнения, в то время как на верхних уровнях иерархии указание критериев может быть либо выражено в общих требованиях (например, «повысить эффективность»), либо вообще не приводится в формулировке цели;

для того чтобы структура целей была удобной для анализа и организации управления, к ней рекомендуется предъявлять некоторые требования - число уровней иерархии и число компонентов в каждом узле должно быть (в силу гипотезы Миллера или числа Колмогорова) К = 5 ± 2 (предел восприятия человеком).

И еще несколько важных законов .

Закон простоты сложных систем - Реализуется, выживает, отбирается тот вариант сложной системы, который обладает наименьшей сложностью. Закон простоты сложных систем реализуется природой в ряде конструктивных принципов:

Оккама,

иерархического модульного построения сложных систем,

симметрии,

симморфоза (равнопрочности, однородности),

полевого взаимодействия (взаимодействия через носитель),

экстремальной неопределенности (функции распределения характеристик и параметров, имеющих неопределенные значения, имеют экстремальную неопределенность).

Закон конечности скорости распространения взаимодействия - Все виды взаимодействия между системами, их частями и элементами имеют конечную скорость распространения. Ограничена также скорость изменения состояний элементов системы. Автором закона является А.Эйнштейн.

Теорема Геделя о неполноте - В достаточно богатых теориях (включающих арифметику) всегда существуют недоказуемые истинные выражения. Поскольку сложные системы включают в себя (реализуют) элементарную арифметику, то при выполнении вычислений в ней могут возникнуть тупиковые ситуации (зависания).

Закон эквивалентности вариантов построения сложных систем - С ростом сложности системы доля вариантов ее построения, близких к оптимальному варианту, растет.

Закон Онсагера максимизации убывания энтропии - Если число всевозможных форм реализации процесса, согласных с законами физики, не единственно, то реализуется та форма, при которой энтропия системы растет наиболее медленно. Иначе говоря, реализуется та форма, при которой максимизируется убывание энтропии или рост информации, содержащейся в системе.

12. Что подразумевают под функциональным описанием систем? Зачем и как это делается? Поясните общую формулу функционального описания любой динамической системы.

Изучение любой системы предполагает создание модели системы, позволяющей произвести анализ и предсказать ее поведение в определенно диапазоне условий, решать задачи анализа и синтеза реальной системы. В зависимости от целей и задач моделирования оно может проводиться на различных уровнях абстракции.

Модель - описание системы, отражающее определенную группу ее свойств.

Описание системы целесообразно начинать с трех точек зрения: функциональной, морфологической и информационной.

Всякий объект характеризуется результатами своего существования, местом, которое он занимает среди других объектов, ролью, которую он играет в среде. Функциональное описание необходимо для того, чтобы осознать важность системы, определить ее место, оценить отношения с другими системами.

Функциональное описание (функциональная модель) должно создать правильную ориентацию в отношении внешних связей системы, ее контактов с окружающим миром, направлениях ее возможного изменения.

Функциональное описание исходит из того, что всякая система выполняет некоторые функции: просто пассивно существует, служит областью обитания других систем, обслуживает системы более высокого порядка, служит средством для создания более совершенных систем.

Как нам уже известно, система может быть однофункциональной и многофункциональной.

Во многом оценка функций системы (в абсолютном смысле) зависит от точки зрения того, кто ее оценивает (или системы, ее оценивающей).

Функционирование системы может описываться числовым функционалом, зависящем от функций, описывающих внутренние процессы системы, либо качественным функционалом (упорядочение в терминах «лучше», «хуже», «больше», «меньше» и т.д.)

Функционал количественно или качественно описывающий деятельность системы называют функционалом эффективности.

Функциональная организация может быть описана:

алгоритмически,

аналитически,

графически,

таблично,

посредством временных диаграмм функционирования,

вербально (словесно).

Описание должно соответствовать концепции развития систем определенного класса и удовлетворять некоторым требованиям:

должно быть открытым и допускать возможность расширения (сужения) спектра функций, реализуемых системой;

предусматривать возможность перехода от одного уровня рассмотрения к другому, т.е. обеспечивать построение виртуальных моделей систем любого уровня.

При описании системы будем рассматривать ее как структуру, в которую в определенные моменты времени вводится нечто (вещество, энергия, информация), и из которой в определенные моменты времени нечто выводится.

В самом общем виде функциональное описание системы в любой динамической системе изображается семеркой:

Sf = {T, x, C, Q, y, φ, η},

где T - множество моментов времени, х - множество мгновенных значений входных воздействий, С = {c: T → x} - множество допустимых входных воздействий; Q - множество состояний; y - множество значений выходных величин; Y = {u: T → y} - множество выходных величин; φ = {T×T×T×c → Q} - переходная функция состояния; η:T×Q → y - выходное отображение; с - отрезок входного воздействия; u - отрезок выходной величины.

Такое описание системы охватывает широкий диапазон свойств.

Недостаток данного описания - не конструктивность: трудность интерпретации и практического применения. Функциональное описание должно отражать такие характеристики сложных и слабо познанных систем как параметры, процессы, иерархию.

Примем, что система S выполняет N функций ψ1, ψ2, ..., ψs, ..., ψN, зависящих от n процессов F1, F2, ..., Fi, ..., Fn. Эффективность выполнения s-й функции

Эs = Эs(ψs) = Э(F1, F2, ..., Fi, ..., Fn) = Эs({Fi}), i = 1...n, s = 1...N.

Общая эффективность системы есть вектор-функционал Э = {Эs}. Эффективность системы зависит от огромного количества внутренних и внешних факторов. Представить эту зависимость в явной форме чрезвычайно сложно, а практическая ценность такого представления незначительна из-за многомерности и многосвязности. Рациональный путь формирования функционального описания состоит в применении такой многоуровневой иерархии описаний, при которой описание более высокого уровня будет зависеть от обобщенных и факторизованных переменных низшего уровня.

Иерархия создается по уровневой факторизацией процессов {Fi} при помощи обобщенных параметров {Qi}, являющихся функционалами {Fi}. Предполагается, что число параметров значительно меньше числа переменных, от которых зависят процессы. Такой способ описания позволяет построить мост между свойствами взаимодействующих со средой элементов (подсистемами низшего уровня) и эффективностью системы.

Процессы {Fi(1)} можно обнаружить на выходе системы. Это процессы взаимодействия со средой. Будем называть их процессами первого уровня и полагать, что они определяются:

параметрами системы первого уровня - Q1(1), Q2(1), ..., Qj(1), ..., Qm(1);

активными противодействующими параметрами среды, непосредственно направленными против системы для снижения ее эффективности - b1, b2, ..., bk, ..., bK;

нейтральными (случайными параметрами среды) c1, c2, ..., cl, ..., cL;

благоприятными параметрами среды d1, d2, ..., dp, ..., dP.

Среда имеет непосредственный контакт с подсистемами низших уровней, воздействуя через них на подсистемы более высокого уровня иерархии, так что Fi* = Fi*({bk}, {cl}, {dp}). Путем построения иерархии (параметры β-го уровня - процессы (β-1)-го уровня - параметры (β-1)-го уровня) можно связать свойства среды с эффективностью системы.

Параметры системы {Qj} могут изменяться при изменении среды, они зависят от процессов в системе и записываются в виде функционалов состояния Qj1(t).

Собственным функциональным пространством системы W называется пространство, точками которого являются все возможные состояния системы, определяемое множеством параметров до уровня b:

Q = {Q(1), Q(2), ... Q(β)}.

Состояние может сохраняться постоянным на некотором интервале времени Т.

Процессы {Fi(2)} не могут быть обнаружены на выходе системы. Это процессы второго уровня, которые зависят от параметров Q(2) подсистем системы (параметров второго уровня). И так далее.

Образуется следующая иерархия описания: эффективность (конечное множество функционалов) - процессы первого уровня (функции) - параметры первого уровня (функционалы) - процессы второго уровня (функции) - параметры второго уровня (функционалы) и т.д. На каком-то уровне наши знания о функциональных свойствах системы исчерпываются, и иерархия обрывается. Обрыв может произойти на разном уровне для разных параметров (процессов), причем как на процессе, так и на параметре.

Внешние характеристики системы определяются верхним уровнем иерархии, поэтому часто удается ограничиться описанием вида ({Эi},{ψS}, {Fi(1)}, {Qj(1)}, {bk}, {cl}, {dp}). Число уровней иерархии зависит от требуемой точности представления входных процессов.

13. Графические способы функционального описания систем. Дерево функций системы.

Выше был рассмотрен способ обобщенного аналитического функционального описания систем. Очень часто при анализе и синтезе систем используется графическое описание, разновидностями которого являются:

дерево функций системы,

стандарт функционального моделирования IDEF0.

Все функции, реализуемые сложной системой, могут быть условно разделены на три группы:

целевая функция;

базисные функции системы;

дополнительные функции системы.

Целевая функция системы соответствует ее основному функциональному назначению, т.е. целевая (главная) функция - отражает назначение, сущность и смысл существования системы.

Основные функции отражают ориентацию системы и представляют собой совокупность макрофункций, реализуемых системой. Эти функции обусловливают существование системы определенного класса. Основные функции - обеспечивают условия выполнения целевой функции (прием, передача приобретение, хранение, выдача).

Дополнительные (сервисные) функции расширяют функциональные возможности системы, сферу их применения и способствуют улучшению показателей качества системы. Дополнительные функции - обеспечивают условия выполнения основных функций (соединение (разведение, направление, гарантирование)).

Описание объекта на языке функций представляется в виде графа.

Формулировка функции внутри вершин должна включать 2 слова: глагол и существительное «Делать что».

Дерево функций системы представляет декомпозицию функций системы и формируется с целью детального исследования функциональных возможностей системы и анализа совокупности функций, реализуемых на различных уровнях иерархии системы. На базе дерева функций системы осуществляется формирование структуры системы на основе функциональных модулей. В дальнейшем структура на основе таких модулей покрывается конструктивными модулями (для технических систем) или организационными модулями (для организационно-технических систем). Таким образом, этап формирования дерева функций является одним из наиболее ответственных не только при анализе, но и при синтезе структуры системы. Ошибки на этом этапе приводят к созданию «систем-инвалидов», не способных к полной функциональной адаптации с другими системами, пользователем и окружающей средой.

Исходными данными для формирования дерева функций являются основные и дополнительные функции системы.

Формирование дерева функций представляет процесс декомпозиции целевой функции и множества основных и дополнительных функций на более элементарные функции, реализуемые на последующих уровнях декомпозиции.

При этом каждая из функций конкретно взятого i-ого уровня может рассматриваться как макрофункция по отношению к реализующим ее функциям на (i+1)-го уровня, и как элементарная функция по отношению к соответствующей функции верхнего (i-1)-го уровня.

Описание функций системы с использованием IDEF0-нотации основано на тех же принципах декомпозиции, но представляется не в виде дерева, а набора диаграмм.

14. Графические способы функционального описания систем. Методология IDEF0. Синтаксис языка.

Объектами моделирования являются системы.

Описание IDEF0 модели построено в виде иерархической пирамиды, в вершине которой представляется самое общее описание системы, а основание представляет собой множество более детальных описаний.

IDEF0 методология построена на следующих принципах:

Графическое описание моделируемых процессов. Графический язык Блоков и Дуг IDEF0 Диаграмм отображает операции или функции в виде Блоков, а взаимодействие между входами/выходами операций, входящими в Блок или выходящими из него, Дугами.

Лаконичность. За счет использования графического языка описания процессов достигается с одной стороны точность описания, а с другой - краткость.

Необходимость соблюдения правил и точность передачи информации. При IDEF0 моделировании необходимо придерживаться следующих правил:

На Диаграмме должно быть не менее 3-х и не более 6-и функциональных Блоков.

Диаграммы должны отображать информацию, не выходящую за рамки контекста, определенного целью и точкой зрения.

Диаграммы должны иметь связанный интерфейс, когда номера Блоков, Дуги и ICOM коды имеют единую структуру.

Уникальность имен функций Блоков и наименований Дуг.

Четкое определение роли данных и разделение входов и управлений.

Замечания для Дуг и имена функций Блоков должны быть краткими и лаконичными.

Для каждого функционального Блока необходима как минимум одна управляющая Дуга.

Модель всегда строится с определенной целью и с позиций конкретной точки зрения.

В процессе моделирования очень важным является четко определить направление разработки модели - ее контекст, точку зрения и цель.

Контекст модели очерчивает границы моделируемой системы и описывает ее взаимосвязи с внешней средой.

Необходимо помнить, что одна модель представляет одну точку зрения. Для моделирования системы с нескольких точек зрения используется несколько моделей.

Цель отражает причину создания модели и определяет ее назначение. При этом все взаимодействия в модели рассматриваются именно с точки зрения достижения поставленной цели.

В рамках методологии IDEF0 модель системы описывается при помощи Графических IDEF0 Диаграмм и уточняется за счет использования FEO, Текстовых и Диаграмм Глоссария. При этом модель включает в себя серию взаимосвязанных Диаграмм, разделяющих сложную систему на составные части. Диаграммы более высокого уровня (А-0, А0) - являются наиболее общим описанием системы, представленным в виде отдельных Блоков. Декомпозиция этих Блоков позволяет достигать требуемого уровня детализации описания системы.

Разработка IDEF0 Диаграмм начинается с построения самого верхнего уровня иерархии (А-0) - одного Блока и интерфейсных Дуг, описывающих внешние связи рассматриваемой системы. Имя функции, записываемое в Блоке 0, является целевой функцией системы с принятой точки зрения и цели построения модели.

При дальнейшем моделировании Блок 0 декомпозируется на Диаграмме А0, где целевая функция уточняется с помощью нескольких Блоков, взаимодействие между которыми описывается с помощью Дуг. В свою очередь, функциональные Блоки на Диаграмме А0 могут быть также декомпозированы для более детального представления.

В результате, имена функциональных Блоков и интерфейсные Дуги, описывающие взаимодействие всех Блоков, представленных на Диаграммах, образуют иерархическую взаимосогласованную модель.

Хотя вершиной модели является Диаграмма уровня А-0, настоящей «рабочей вершиной или структурой» является Диаграмма А0, поскольку она является уточненным выражением точки зрения модели. Ее содержание показывает, что будет рассматриваться в дальнейшем, ограничивая последующие уровни в рамках цели проекта. Нижние уровни уточняют содержание функциональных Блоков, детализируя их, но, не расширяя границ модели.

15. Методология IDEF0. Понятие Дуг. Пять типов взаимосвязей между блоками. Принцип декомпозиции блоков .

Блоки отображают функции или действия системы. Их действия записываются глагол + объект действия + дополнение

например, «разработать план-график проведения работ».

Дуги отображают информацию или материальные объекты, которые необходимы для выполнения функции или появляются в результате выполнения. В роли объекта могут выступать: Документы, физические материалы, инструменты, станки, информация, организации м даже подсистемы. Место соединения дуги с блоком определяет тип интерфейса. Замечания к дуге формулируются в виде оборота существительного, отвечающего на вопрос «что». Блоки располагаются на диаграмме по степени автора в зависимости от степени автора. Доминирующим является блок, выполнение которого оказывает влияние управления для максимального количества блоков. Доминирующий блок располагается в левом верхнем углу, наименее важный - в правом нижнем.

Важно!

Расположение блоков не задаёт временную зависимость операции!

Смотри рис. 1

Взаимосвязь по управлению.

Взаимосвязь по входу. (конвеер)

Обратная связь по управлению. Выход первой функции управляет входом второй, которая в свою очередь влияет на работу 1-го.

Обратная связь по входу.

Взаимосвязь выход - механизм. Редкий тип связи, используемый в подготовительных операциях.

Пример: создать idef модель для отдела контроля оценки эффективности управления и функционирования библиотеки. см. рисунок 2. Блок А0, отражающий целевую функцию. Затем, на рисунке 3 происходит декомпозиция диаграммы А0. В случае необходимости каждый из блоков необходимо декомпозировать.

Декомпози́ция - научный метод, использующий структуру задачи и позволяющий заменить решение одной большой задачи решением серии меньших задач.

16. Морфологическое описание и моделирование систем. Описание структуры системы и отношений между элементами.

морфологическое описание должно давать представление о строении системы (морфология - наука о форме, строении). Глубина описания, уровень детализации, т.е. определение какие компоненты системы будут рассматриваться в качестве элементарных (элементов), обусловливается назначением описания системы. Морфологическое описание иерархично. Конфигурация морфологии дается на стольких уровнях, сколько их требуется для создания представления об основных свойствах системы.

Целями структурного анализа являются:

разработка правил символического отображения систем;

оценка качества структуры системы;

изучение структурных свойств системы в целом и ее подсистем;

выработка заключения об оптимальности структуры системы и рекомендаций по дальнейшему ее совершенствованию.

В структурном подходе можно выделить два этапа: определение состава системы, т.е. полное перечисление ее подсистем, элементов, и выяснение связей между ними.

Изучение морфологии системы начинается с элементного состава. Он может быть:

гомогенным (однотипные элементы);

гетерогенным (разнотипные элементы);

смешанным.

Однотипность не означает полной идентичности и определяет только близость основных свойств.

Гомогенности, как правило, сопутствует избыточность и наличие скрытых (потенциальных) возможностей, дополнительных резервов.

Гетерогенные элементы специализированы, они экономичны и могут быть эффективными в узком диапазоне внешних условий, но быстро теряют эффективность вне этого диапазона.

Иногда элементный состав определить не удается - неопределенный.

Важным признаком морфологии является назначение (свойства) элементов. Различают элементы:

информационные;

энергетические;

вещественные.

Следует помнить, что такое деление условно и отражает лишь преобладающие свойства элемента. В общем же случае, передача информации не возможна без энергии, перенос энергии не возможен без информации.

Информационные элементы предназначены для приема, запоминания (хранения), преобразования и передачи информации. Преобразование может состоять в изменении вида энергии, которая несет информацию, в изменении способа кодирования (представления в некоторой знаковой форме) информации, в сжатии информации путем сокращения избыточности, принятия решений и т.д.

Различают обратимые и необратимые преобразования информации.

Обратимые не связаны с потерей (либо созданием новой) информации. Накопление (запоминание) является обратимым в том случае, если не происходит потерь информации в течение времени хранения.

Преобразование энергии состоит в изменении параметров энергетического потока. Поток входной энергии может поступать извне, либо от других элементов системы. Выходной энергетический поток направлен в другие системы, либо в среду. Процесс преобразования энергии, естественным образом, нуждается в информации.

Процесс преобразования вещества может быть механическим (например, штамповка), химическим, физическим (например, резка), биологическим. В сложных системах преобразование вещества носит смешанный характер.

В общем случае, следует иметь в виду, что любые процессы, так или иначе, приводят к преобразованию вещества, энергии и информации.

Морфологические свойства системы существенно зависят от характера связей между элементами. Понятие связи входит в любое определение системы. Оно одновременно характеризует и строение (статику) и функционирование (динамику) системы. Связи обеспечивают возникновение и сохранение структуры и свойств системы. Выделяют информационные, вещественные и энергетические связи, определяя их в том же смысле, в каком были определены элементы.

Характер связи определяется удельным весом соответствующего компонента (или целевой функцией).

Связь характеризуется:

направлением,

силой,

видом.

По первым двум признакам связи делят на направленные и ненаправленные, сильные и слабые, а по характеру - подчинения, порождения (генетические), равноправные и связи управления.

Некоторые из этих связей можно раздробить еще более детально. Например, связи подчинения на связи «род-вид», «часть-целое»; связи порождения - «причина-следствие».

Их можно разделить также по месту приложения (внутренние - внешние), по направленности процессов (прямые, обратные, нейтральные).

Прямые связи предназначены для передачи вещества, энергии, информации или их комбинаций от одного элемента другому в соответствии с последовательностью выполняемых функций.

Качество связи определяется ее пропускной способностью и надежностью.

Очень важную роль, как мы уже знаем, играют обратные связи - они являются основной саморегулирования и развития систем, приспособления их к изменяющимся условиям существования. Они в основном служат для управления процессами и наиболее распространены информационные обратные связи.

Нейтральные связи не относятся к функциональной деятельности системы, непредсказуемы и случайны. Однако нейтральные связи могут сыграть определенную роль при адаптации системы, служить исходным ресурсом для формирования прямых и обратных связей, являться резервом.

Морфологическое описание может включать указания на наличие и вид связи, содержать общую характеристику связи либо их качественные и количественные оценки.

Структурные свойства систем определяются характером и устойчивостью отношений между элементами. По характеру отношений между элементами структуры делятся на:

многосвязные,

иерархические,

смешанные.

Наиболее устойчивы детерминированные структуры, в которых отношения либо постоянны, либо изменяются во времени по детерминированным законам. Вероятностные структуры изменяются во времени по вероятностным законам. Хаотические структуры характерны отсутствием ограничений, элементы в них вступают в связь в соответствии с индивидуальными свойствами. Классификация производится по доминирующему признаку.

Структура играет основную роль в формировании новых свойств системы, отличных от свойств ее компонентов, в поддержании целостности и устойчивости ее свойств по отношению к изменению элементов системы в некоторых пределах.

Важными структурными компонентами являются отношения координации и субординации.

Координация выражает упорядоченность элементов системы «по-горизонтали». Здесь идет речь о взаимодействии компонент одного уровня организации.

Субординация - «вертикальная» упорядоченность подчинения и субподчинения компонент. Здесь речь идет о взаимодействии компонент различных уровней иерархии.

Иерархия (hiezosazche - священная власть, греч.) - это расположение частей целого в порядке от высшего к низшему. Термин «иерархия» (многоступенчатость) определяет упорядоченность компонентов системы по степени важности. Между уровнями иерархии структуры могут существовать взаимоотношения строгого подчинения компонент нижележащего уровня одному из компонент вышележащего уровня, т.е. отношения древовидного порядка. Такие иерархии называют сильными или иерархии типа «дерево».

Однако между уровнями иерархической структуры необязательно должны существовать отношения древовидного характера. Могут иметь место связи и в пределах одного уровня иерархии. Нижележащий компонент может подчиняться нескольким компонентами вышележащего уровня - это иерархические структуры со слабыми связями.

Для иерархических структур характерно наличие управляющих и исполнительных компонент. Могут существовать компоненты, являющиеся одновременно и управляющими и исполнительными.

Различают строго и нестрого иерархические структуры.

Система строгой иерархической структуры имеют следующие признаки:

в системе имеется один главный управляющий компонент, который имеет не менее двух связей;

имеются исполнительные компоненты, каждый из которых имеет только одну связь с компонентом вышележащего уровня;

связь существует только между компонентами, принадлежащим двум соседним уровням, при этом компоненты низшего уровня связаны только с одним компонентом высшего уровня, а каждый компонент высшего уровня не менее, чем с двумя компонентами низшего. Рис.1

Рис. 2.

На рис.1 приведен граф строго иерархической структуры, на рис.2 граф нестрогой иерархической структуры. Обе структуры трехуровневые.

Так на рис.1 элемент 1-го уровня иерархии может представлять собой ректора университета, элементы 2-го уровня - проректоров, 3-го уровня - деканов, остальные элементы (4-го уровня, не отраженного на рисунке) будут представлять заведующих кафедрами. Понятно, что все элементы и связи представленной структуры не равноправны.

Как правило, наличие иерархии является признаком высокого уровня организации структуры, хотя могут существовать и не иерархические высокоорганизованные системы.

В функциональном отношении иерархические структуры более экономичны.

Для не иерархических структур не существует компонент, которые являются только управляющими или только исполнительными. Любой компонент взаимодействует более чем с одним компонентом.

Рис. 3 - Граф многосвязной структуры системы

Рис. 4 - Граф сотовой структуры системы

Смешанные структуры представляют собой различные комбинации иерархических и неиерархических структур.

Введем понятие лидерства.

Лидирующей называется подсистема, удовлетворяющая следующим требованиям:

подсистема не имеет детерминированного взаимодействия ни с одной подсистемой;

подсистема является управляющей (при непосредственном или опосредованном взаимодействии) по отношению к части (наибольшему числу подсистем);

подсистема либо не является управляемой (подчиненной), либо управляется наименьшим (по сравнению с другими) числом подсистем.

Лидирующих подсистем может быть больше одной, при нескольких лидирующих подсистемах возможна главная лидирующая подсистема. Подсистема высшего уровня иерархической структуры одновременно должна быть главной лидирующей, если же этого нет, то предполагаемая иерархическая структура либо неустойчива, либо не соответствует истинной структуре системы.

Смешанные структуры представляют собой различные комбинации иерархических и неиерархических структур. Стабильность структуры характеризуется временем ее изменения. Структура может изменяться без преобразования класса или преобразованием одного класса в другой. В частности, возникновение лидера в неиерархической структуре может привести к преобразованию ее в иерархическую, а возникновение лидера в иерархической структуре - к установлению ограничивающей, а затем детерминированной связи между лидирующей подсистемой и подсистемой высшего уровня. В результате этого подсистема высшего уровня заменяется лидирующей подсистемой, либо объединяется с ней, или иерархическая структура преобразуется в неиерархическую (смешанную).

Равновесными называются неиерархические структуры без лидеров. Чаще всего равновесными бывают многосвязные структуры. Равновесность не означает покомпонентной идентичности метаболизма, речь идет только о степени влияния на принятие решений.

Особенностью иерархических структур является отсутствие горизонтальных связей между элементами. В этом смысле данные структуры являются абстрактными построениями, поскольку в реальной действительности трудно найти производственную или какую-либо другую действующую систему с отсутствующими горизонтальными связями.

Важное значение при морфологическом описании системы имеют ее композиционные свойства. Композиционные свойства систем определяются способом объединения элементов в подсистемы. Будем различать подсистемы:

эффекторные (способные преобразовывать воздействие и воздействовать веществом или энергией на другие подсистемы и системы, в том числе на среду),

рецепторные (способные преобразовывать внешнее воздействие в информационные сигналы, передавать и переносит информацию)

рефлексивные (способные воспроизводить внутри себя процессы на информационном уровне, генерировать информацию).

Композиция систем, не содержащих (до элементного уровня) подсистем с выраженными свойствами, называется слабой. Композиция систем, содержащих элементы с выраженными функциями, называется соответственно с эффекторными, рецепторными или рефлексивными подсистемами; возможны комбинации. Композицию систем, включающих подсистемы всех трех видов, будем называть полной Элементы системы (т.е. подсистемы, в глубь которых морфологический анализ не распространяется) могут иметь эффекторные, рецепторные или рефлексивные свойства, а также их комбинации.

На теоретико-множественном языке морфологическое описание есть четверка:

SM = {S, V, d, K},

где S={Si}i - множество элементов и их свойств (под элементом в данном случае понимается подсистема, вглубь которой морфологическое описание не проникает); V ={Vj}j - множество связей; δ - структура; К - композиция.

Все множества считаем конечными.

Будем различать в S:

Состав:

гомогенный,

гетерогенный,

смешанный (большое количество гомогенных элементов при некотором количестве гетерогенных),

неопределенный.

Свойства элементов:

информационные,

энергетические,

информационно-энергетические,

вещественно-энергетические,

неопределенные (нейтральные).

Будем различать во множестве V:

Назначение связей:

информационные,

вещественные,

энергетические.

Характер связей:

прямые,

обратные,

нейтральные.

Будем различать в d:

Устойчивость структуры:

детерминированная,

вероятностная,

хаотическая.

Построения:

иерархические,

многосвязные,

смешанные,

преобразующиеся.

Будем различать во множестве К:

Композиции:

слабые,

с эффекторными подсистемами,

с рецепторными подсистемами,

с рефлексивными подсистемами,

полные,

неопределенные.

Морфологическое описание, как и функциональное, строится по иерархическому (многоуровневому) принципу путем последовательной декомпозиции подсистем. Уровни декомпозиции системы, уровни иерархии функционального и морфологического описания должны совпадать. Морфологическое описание можно выполнить последовательным расчленением системы. Это удобно в том случае, если связи между подсистемами одного уровня иерархии не слишком сложны. Наиболее продуктивны (для практических задач) описания с единственным членением или с небольшим их числом. Каждый элемент структуры можно, в свою очередь, описать функционально и информационно. Морфологические свойства структуры характеризуются временем установления связи между элементами и пропускной способностью связи. Можно доказать, что множество элементов структуры образует нормальное метрическое пространство. Следовательно, в нем можно определить метрику (понятие расстояния). Для решения некоторых задач целесообразно введение метрики в структурном пространстве.

17. Методы описания структур при морфологическом описании. Графы структур .

Структурные схемы - Формирование структуры является частью решения общей задачи описания системы. Структура выявляет общую конфигурацию системы, а не определяет систему в целом.

Если изобразить систему как совокупность блоков, осуществляющих некоторые функциональные преобразования, и связей между ними, то получим структурную схему, в обобщенном виде описывающую структуру системы. Под блоком обычно понимают, особенно в технических системах, функционально законченное и оформленное в виде отдельного целого устройство. Членение на блоки может осуществляться исходя из требуемой степени детализации описания структуры, наглядности отображения в ней особенностей процессов функционирования, присущих системе. Помимо функциональных, в структурную схему могут включаться логические блоки, позволяющие изменять характер функционирования в зависимости от того, выполняются или нет некоторые заранее заданные условия.

Структурные схемы наглядны и вмещают в себя информацию о большом числе структурных свойств системы. Они легко поддаются уточнению и конкретизации, в ходе которой не надо изменять всю схему, а достаточно заменить отдельные ее элементы структурными схемами, включающими не один, как раньше, а несколько взаимодействующих блоков.

Однако, структурная схема - это еще не модель структуры. Она с трудом поддается формализации и является скорее естественным мостиком, облегчающим переход от содержательного описания системы к математическому, чем действительным инструментом анализа и синтеза структур. Рис. - Пример структурной схемы

Графы - Отношения между элементами структуры могут быть представлены соответствующим графом, что позволяет формализовать процесс исследования инвариантных во времени свойств систем и использовать хорошо развитый математический аппарат теории графов.

Определение. Графом называют тройку G=(M, R, P), где М - множество вершин, R - множество ребер (или дуг графа), Р - предикат инцидентности вершин и ребер графа. Р(x, y, r) = 1 означает, что вершины x,y ∈ M инцидентны (связаны, лежат на) ребру графа r R.
Для того чтобы облегчить работу с графом, вершины его обычно нумеруют. Граф с пронумерованными вершинами называется отмеченным.

Каждое ребро графа связывает две вершины, называемые в этом случае смежными. Если граф отмечен, то ребро задается парой (i,j), где i и j - номера смежных вершин. Очевидно, что ребро (i,j) инцидентно вершинам i и j , и обратно.

Если все ребра графа заданы упорядоченными парами (i,j), в которых порядок расположения смежных вершин имеет значение, то граф называется ориентированным. Неориентированный граф не содержит ориентированных ребер. В частично ориентированном графе ориентированы не все ребра.

Геометрически графы изображают в виде диаграмм, на которых вершины отображаются точками (окружностями, прямоугольниками), а ребра - отрезками, соединяющими смежные вершины. Ориентированное ребро задают отрезком со стрелкой.

Использование диаграмм настолько распространено, что обычно, говоря о графе, представляют себе именно диаграмму графа.

Если ребра графа имеют некоторые числовые характеристики связи, то такие графы называются взвешенными. В этом случае матрица инцидентности содержит веса соответствующих связей, знак перед числом определяет направление ребра.

Важной характеристикой структурного графа является число возможных путей, по которым можно пройти от одной вершины к другой. Чем больше таких путей, тем совершеннее структура, но тем она избыточнее. Избыточность обеспечивает надежность структуры. Например, разрушение 90% нервных связей головного мозга не ощущается и не влияет на поведение. Может существовать и бесполезная избыточность, которая в структурном графе изображается в виде петель.

18. Структура системного анализа. Базовый цикл решения. Дерево функций.

Общий подход к решению проблем может быть представлен как цикл.

При этом в процессе функционирования реальной системы выявляется проблема практики как несоответствие существующего положения дел требуемому. Для решения проблемы проводится системное исследование (декомпозиция, анализ и синтез) системы, снимающее проблему. В ходе синтеза осуществляется оценка анализируемой и синтезируемой систем. Реализация синтезированной системы в виде предлагаемой физической системы позволяет провести оценку степени снятия проблемы практики и принять решение на функционирование модернизированной (новой) реальной системы.

При таком представлении становится очевидным еще один аспект определения системы: система есть средство решения проблем.

Основные задачи системного анализа могут быть представлены в виде трехуровневого дерева функций.

На этапе декомпозиции, обеспечивающем общее представление системы, осуществляются:

Определение и декомпозиция общей цели исследования и основной функции системы как ограничение траектории в пространстве состояний системы или в области допустимых ситуаций. Наиболее часто декомпозиция проводится путем построения дерева целей и дерева функций.

Выделение системы из среды (разделение на систему/«несистему») по критерию участия каждого рассматриваемого элемента в процессе, приводящем к результату на основе рассмотрения системы как составной части надсистемы.

Описание воздействующих факторов.

Описание тенденций развития, неопределенностей разного рода.

Описание системы как «черного ящика».

Функциональная (по функциям), компонентная (по виду элементов) и структурная (по виду отношений между элементами) декомпозиции системы.

Глубина декомпозиции ограничивается. Декомпозиция должна прекращаться, если необходимо изменить уровень абстракции - представить элемент как подсистему. Если при декомпозиции выясняется, что модель начинает описывать внутренний алгоритм функционирования элемента вместо закона его функционирования в виде «черного ящика», то в этом случае произошло изменение уровня абстракции. Это означает выход за пределы цели исследования системы и, следовательно, вызывает прекращение декомпозиции.

В автоматизированных методиках типичной является декомпозиция модели на глубину 5-6 уровней. На такую глубину декомпозируется обычно одна из подсистем. Функции, которые требуют такого уровня детализации, часто очень важны, и их детальное описание дает ключ к секретам работы всей системы.

В общей теории систем доказано, что большинство систем могут быть декомпозированы на базовые представления подсистем. К ним относят: последовательное (каскадное) соединение элементов, параллельное соединение элементов, соединение с помощью обратной связи.
Проблема проведения декомпозиции состоит в том, что в сложных системах отсутствует однозначное соответствие между законом функционирования подсистем и алгоритмом, его реализации. Поэтому осуществляется формирование нескольких вариантов (или одного варианта, если система отображена в виде иерархической структуры) декомпозиции системы.

Рассмотрим некоторые наиболее часто применяемые стратегии декомпозиции.

Функциональная декомпозиция. Декомпозиция базируется на анализе функций системы. При этом ставится вопрос что делает система, независимо от того, как она работает. Основанием разбиения на функциональные подсистемы служит общность функций, выполняемых группами элементов.

Декомпозиция по жизненному циклу. Признак выделения подсистем - изменение закона функционирования подсистем на разных этапах цикла существования системы «от рождения до гибели». Рекомендуется применять эту стратегию, когда целью системы является оптимизация процессов и когда можно определить последовательные стадии преобразования входов в выходы.

Декомпозиция по физическому процессу. Признак выделения подсистем - шаги выполнения алгоритма функционирования подсистемы, стадии смены состояний. Хотя эта стратегия полезна при описании существующих процессов, результатом ее часто может стать слишком последовательное описание системы, которое не будет в полной мере учитывать ограничения, диктуемые функциями друг другу. При этом может оказаться скрытой последовательность управления. Применять эту стратегию следует, только если целью модели является описание физического процесса как такового.

Декомпозиция по подсистемам (структурная декомпозиция). Признак выделения подсистем - сильная связь между элементами по одному из типов отношений (связей), существующих в системе (информационных, логических, иерархических, энергетических и т.п.). Силу связи, например, по информации можно оценить коэффициентом информационной взаимосвязи подсистем k = N / N0 , где N - количество взаимоиспользуемых информационных массивов в подсистемах, N0 - общее количество информационных массивов. Для описания всей системы должна быть построена составная модель, объединяющая все отдельные модели. Рекомендуется использовать разложение на подсистемы, только когда такое разделение на основные части системы не изменяется. Нестабильность границ подсистем быстро обесценит как отдельные модели, так и их объединение.

На этапе анализа, обеспечивающем формирование детального представления системы, осуществляются:

Функционально-структурный анализ существующей системы, позволяющий сформулировать требования к создаваемой системе. Он включает уточнение состава и законов функционирования элементов, алгоритмов функционирования и взаимовлияний подсистем, разделение управляемых и неуправляемых характеристик, задание пространства состояний Z, задание параметрического пространства Т, в котором задано поведение системы, анализ целостности системы, формулирование требований к создаваемой системе.

Морфологический анализ - анализ взаимосвязи компонентов.

Генетический анализ - анализ предыстории, причин развития ситуации, имеющихся тенденций, построение прогнозов.

Анализ аналогов.

Анализ эффективности (по результативности, ресурсоемкости, оперативности). Он включает выбор шкалы измерения, формирование показателей эффективности, обоснование и формирование критериев эффективности, непосредственно оценивание и анализ полученных оценок.

Формирование требований к создаваемой системе, включая выбор критериев оценки и ограничений.

Этап синтеза системы, решающей проблему, представлен в виде упрощенной функциональной диаграммы на рисунке. На этом этапе осуществляются:

Разработка модели требуемой системы (выбор математического аппарата, моделирование, оценка модели по критериям адекватности, простоты, соответствия между точностью и сложностью, баланса погрешностей, многовариантности реализаций, блочности построения).

Синтез альтернативных структур системы, снимающей проблему.

Синтез параметров системы, снимающей проблему.

Оценивание вариантов синтезированной системы (обоснование схемы оценивания, реализация модели, проведение эксперимента по оценке, обработка результатов оценивания, анализ результатов, выбор наилучшего варианта).

Рис. - Упрощенная функциональная диаграмма этапа синтеза системы, решающей проблему

Оценка степени снятия проблемы проводится при завершении системного анализа.

Наиболее сложными в исполнении являются этапы декомпозиции и анализа. Это связано с высокой степенью неопределенности, которую требуется преодолеть в ходе исследования.

19. 9 стадий формирования представления системы.

Стадия 1. Выявление главных функций (свойств, целей, предназначения) системы. Формирование (выбор) основных предметных понятий, используемых в системе. На этой стадии речь идет об уяснении основных выходов в системе. Именно с этого лучше всего начинать ее исследование. Должен быть определен тип выхода: материальный, энергетический, информационный, они должны быть отнесены к каким-либо физическим или другим понятиям (выход производства - продукция (какая?), выход системы управления - командная информация (для чего? в каком виде?), выход автоматизированной информационной системы - сведения (о чем?) и т.д.).

Стадия 2. Выявление основных функций и частей (модулей) в системе. Понимание единства этих частей в рамках системы. На этой стадии происходит первое знакомство с внутренним содержанием системы, выявляется, из каких крупных частей она состоит и какую роль каждая часть играет в системе. Это стадия получения первичных сведений о структуре и характере основных связей. Такие сведения следует представлять и изучать при помощи структурных или объектно-ориентированных методов анализа систем, где, например, выясняется наличие преимущественно последовательного или параллельного характера соединения частей, взаимной или преимущественно односторонней направленности воздействий между частями и т.п. Уже на этой стадии следует обратить внимание на так называемые системообразующие факторы, т.е. на те связи, взаимообусловленности, которые и делают систему системой.

Стадия 3. Выявление основных процессов в системе, их роли, условий осуществления; выявление стадийности, скачков, смен состояний в функционировании; в системах с управлением - выделение основных управляющих факторов. Здесь исследуется динамика важнейших изменений в системе, ход событий, вводятся параметры состояния, рассматриваются факторы, влияющие на эти параметры, обеспечивающие течение процессов, а также условия начала и конца процессов. Определяется, управляемы ли процессы и способствуют ли они осуществлению системой своих главных функций. Для управляемых систем уясняются основные управляющие воздействия, их тип, источник и степень влияния на систему.

Стадия 4. Выявление основных элементов «несистемы», с которыми связана изучаемая система. Выявление характера этих связей. На этой стадии решается ряд отдельных проблем. Исследуются основные внешние воздействия на систему (входы). Определяются их тип (вещественные, энергетические, информационные), степень влияния на систему, основные характеристики. Фиксируются границы того, что считается системой, определяются элементы «несистемы», на которые направлены основные выходные воздействия. Здесь же полезно проследить эволюцию системы, путь ее формирования. Нередко именно это ведет к пониманию структуры и особенностей функционирования системы. В целом данная стадия позволяет лучше уяснить главные функции системы, ее зависимость и уязвимость или относительную независимость во внешней среде.

Стадия 5. Выявление неопределенностей и случайностей в ситуации их определяющего влияния на систему (для стохастических систем).

Стадия 6. Выявление разветвленной структуры, иерархии, формирование представлений о системе как о совокупности модулей, связанных входами-выходами.

Стадией 6 заканчивается формирование общих представлений о системе. Как правило, этого достаточно, если речь идет об объекте, с которым мы непосредственно работать не будем. Если же речь идет о системе, которой надо заниматься для ее глубокого изучения, улучшения, управления, то нам придется пойти дальше по спиралеобразному пути углубленного исследования системы.

Формирование детального представления системы

Стадия 7. Выявление всех элементов и связей, важных для целей рассмотрения. Их отнесение к структуре иерархии в системе. Ранжирование элементов и связей по их значимости.

Стадии 6 и 7 тесно связаны друг с другом, поэтому их обсуждение полезно провести вместе. Стадия 6 - это предел познания «внутрь» достаточно сложной системы для лица, оперирующего ею целиком. Более углубленные знания о системе (стадия 7) будет иметь уже только специалист, отвечающий за ее отдельные части. Для не слишком сложного объекта уровень стадии 7 - знание системы целиком - достижим и для одного человека. Таким образом, хотя суть стадий 6 и 7 одна и та же, но в первой из них мы ограничиваемся тем разумным объемом сведений, который доступен одному исследователю.

При углубленной детализации важно выделять именно существенные для рассмотрения элементы (модули) и связи, отбрасывая все то, что не представляет интереса для целей исследования. Познание системы предполагает не всегда только отделение существенного от несущественного, но также акцентирование внимания на более существенном. Детализация должна затронуть и уже рассмотренную в стадии 4 связь системы с «несистемой». На стадии 7 совокупность внешних связей считается проясненной настолько, что можно говорить о доскональном знании системы.

Стадии 6 и 7 подводят итог общему, цельному изучению системы. Дальнейшие стадии уже рассматривают только ее отдельные стороны. Поэтому важно еще раз обратить внимание на системообразующие факторы, на роль каждого элемента и каждой связи, на понимание, почему они именно таковы или должны быть именно таковыми в аспекте единства системы.

Стадия 8. Учет изменений и неопределенностей в системе. Здесь исследуются медленное, обычно нежелательное изменение свойств системы, которое принято называть «старением», а также возможность замены отдельных частей (модулей) на новые, позволяющие не только противостоять старению, но и повысить качество системы по сравнению с первоначальным состоянием. Такое совершенствование искусственной системы принято называть развитием. К нему также относят улучшение характеристик модулей, подключение новых модулей, накопление информации для лучшего ее использования, а иногда и перестройку структуры, иерархии связей.

Основные неопределенности в стохастической системе считаются исследованными на стадии 5. Однако недетерминированность всегда присутствует и в системе, не предназначенной работать в условиях случайного характера входов и связей. Добавим, что учет неопределенностей в этом случае обычно превращается в исследование чувствительности важнейших свойств (выходов) системы. Под чувствительностью понимают степень влияния изменения входов на изменение выходов.

Стадия 9. Исследование функций и процессов в системе в целях управления ими. Введение управления и процедур принятия решения. Управляющие воздействия как системы управления. Для целенаправленных и других систем с управлением данная стадия имеет большое значение. Основные управляющие факторы были уяснены при рассмотрении стадии 3, но там это носило характер общей информации о системе. Для эффективного введения управлений или изучения их воздействий на функции системы и процессы в ней необходимо глубокое знание системы. Именно поэтому мы говорим об анализе управлений только сейчас, после всестороннего рассмотрения системы. Напомним, что управление может быть чрезвычайно разнообразным по содержанию - от команд специализированной управляющей ЭВМ до министерских приказов.

Однако возможность единообразного рассмотрения всех целенаправленных вмешательств в поведение системы позволяет говорить уже не об отдельных управленческих актах, а о системе управления, которая тесно переплетается с основной системой, но четко выделяется в функциональном отношении.

На данной стадии выясняется, где, когда и как (в каких точках системы, в какие моменты, в каких процессах, скачках, выборах из совокупности, логических переходах и т.д.) система управления воздействует на основную систему, насколько это эффективно, приемлемо и удобно реализуемо. При введении управлений в системе должны быть исследованы варианты перевода входов и постоянных параметров в управляемые, определены допустимые пределы управления и способы их реализации.

После завершения стадий 6-9 исследование систем продолжается на качественно новом уровне - следует специфическая стадия моделирования. О создании модели можно говорить только после полного изучения системы.

Целевая

Осн. Функция 2

Осн. Функция 1

Всп. функция 2

Всп. функция 1

Всп. функция 3

Всп. функция 1

Всп. функция 2

Системные методы и процедуры.Какие типы математических моделей по способу построения вы...